Uncheatable Benchmarks

不可欺骗的基准

基本信息

  • 批准号:
    9319393
  • 负责人:
  • 金额:
    $ 13.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-08-15 至 1997-07-31
  • 项目状态:
    已结题

项目摘要

Benchmarks have been used to test everything from the speed of a processor to the access time of a memory system. The computing community relies on them heavily to assess how fast a given hardware or software system operates. They are of fundamental importance in everyday computing. However, up until now, the study of the art of designing a good benchmark has focused on making the benchmark ``realistic'' in predicting how well it will perform for the intended applications; the issue of making benchmark results trustworthy has been relegated to ``trusted'' or third party agents, and little attention has been paid to the question of making benchmarks themselves ``uncheatable.'' The project studies the problem of how to make benchmarks resistant to tampering and hence more trustworthy. The plan is to use modern cryptography and complexity theory to make this possible. Basically the trust in individuals and organizations is replaced by trust in the impossibility of breaking certain computational problems. The advantage of this new approach is clear: the new schemes will be scientifically trustworthy. There is a whole array of problems that need to be formulated and solved, which are important in making uncheatable benchmarks; some are practical issues, some are theoretical.
基准测试已经被用来测试从处理器的速度到内存系统的访问时间的一切。计算社区在很大程度上依赖于它们来评估给定硬件或软件系统的运行速度。它们在日常计算中是至关重要的。然而,到目前为止,对设计一个好的基准的艺术的研究主要集中在使基准“真实”地预测它在预期应用程序中的表现;使基准测试结果可信的问题被降级为“可信”或第三方代理的问题,而使基准测试本身“不可欺骗”的问题却很少受到关注。“该项目研究的问题是如何使基准不受篡改,从而更值得信赖。计划是使用现代密码学和复杂性理论来实现这一目标。基本上,对个人和组织的信任被对不可能打破某些计算问题的信任所取代。这种新方法的优势是显而易见的:新方案在科学上是值得信赖的。有一大堆问题需要制定和解决,这对于制定不可欺骗的基准很重要;有些是实际问题,有些是理论问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin-Yi Cai其他文献

A computational proof of complexity of some restricted counting problems
  • DOI:
    10.1016/j.tcs.2010.10.039
  • 发表时间:
    2011-05-20
  • 期刊:
  • 影响因子:
  • 作者:
    Jin-Yi Cai;Pinyan Lu;Mingji Xia
  • 通讯作者:
    Mingji Xia
Quadratic Lower Bound for Permanent Vs. Determinant in any Characteristic
  • DOI:
    10.1007/s00037-009-0284-2
  • 发表时间:
    2010-02-24
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Jin-Yi Cai;Xi Chen;Dong Li
  • 通讯作者:
    Dong Li
A Note on the Determinant and Permanent Problem
  • DOI:
    10.1016/0890-5401(90)90036-h
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin-Yi Cai
  • 通讯作者:
    Jin-Yi Cai
Holographic reduction, interpolation and hardness
全息还原、插值和硬度
  • DOI:
    10.1007/s00037-012-0044-6
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jin-Yi Cai;Pinyan Lu;Mingji Xia
  • 通讯作者:
    Mingji Xia
Dichotomy for Holant∗ Problems on the Boolean Domain
  • DOI:
    10.1007/s00224-020-09983-8
  • 发表时间:
    2020-06-22
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Jin-Yi Cai;Pinyan Lu;Mingji Xia
  • 通讯作者:
    Mingji Xia

Jin-Yi Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin-Yi Cai', 18)}}的其他基金

AF: Small: Classification Program for Counting Problems
AF:小:计数问题的分类程序
  • 批准号:
    1714275
  • 财政年份:
    2017
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
AF: Small: Counting Problems, Holographic Algorithms and Dichotomy Theorems
AF:小:计数问题、全息算法和二分定理
  • 批准号:
    1217549
  • 财政年份:
    2012
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Counting Problems and Dichotomy Theorems
计数问题和二分定理
  • 批准号:
    0914969
  • 财政年份:
    2009
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Holographic Algorithms and Reductions
全息算法和简化
  • 批准号:
    0830488
  • 财政年份:
    2008
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Some Problems in Complexity Theory
复杂性理论中的一些问题
  • 批准号:
    0511679
  • 财政年份:
    2005
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Continuing Grant
Some Problems in Structural and Lattice Complexity
结构和格复杂性的一些问题
  • 批准号:
    0208013
  • 财政年份:
    2002
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
  • 批准号:
    0196197
  • 财政年份:
    2000
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Worst-Case v.s. Average-Case Complexity and Applications to Secure Cryptography
最坏情况与最差情况
  • 批准号:
    9820806
  • 财政年份:
    1999
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Realistic Uncheatable Benchmarks
现实的、不可欺骗的基准
  • 批准号:
    9634665
  • 财政年份:
    1996
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
PYI: A Study of Computational Complexity Theory
PYI:计算复杂性理论研究
  • 批准号:
    9496107
  • 财政年份:
    1993
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Continuing Grant

相似海外基金

Reliable Tensor-Network Fusion Approach to Medical Informatics: Novel Techniques and Benchmarks
可靠的张量网络融合医学信息学方法:新技术和基准
  • 批准号:
    24K03005
  • 财政年份:
    2024
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
BENCHMARKS: Building a European Network for the Characterisation and Harmonisation of Monitoring Approaches for Research and Knowledge on Soils
基准:建立欧洲网络,以表征和协调土壤研究和知识监测方法
  • 批准号:
    10064786
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    EU-Funded
Building a European Network for the Characterisation and Harmonisation of Monitoring Approaches for Research and Knowledge on Soils (BENCHMARKS)
建立欧洲土壤研究和知识监测方法特征和协调网络(BENCMARKS)
  • 批准号:
    10062462
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    EU-Funded
EAGER: SciDatBench: Principles and Prototypes of Science Data Benchmarks
EAGER:SciDatBench:科学数据基准的原理和原型
  • 批准号:
    2204115
  • 财政年份:
    2022
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: A Flexible Framework for Radiation Parameterizations Traceable to Benchmarks
协作研究:可追溯至基准的灵活辐射参数化框架
  • 批准号:
    1916927
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
CRII: RI: Characterizing Algorithm-Relative Difficulty of Agent Benchmarks
CRII:RI:表征代理基准的算法相对难度
  • 批准号:
    1948017
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Understanding Medication Adherence Benchmarks, Safety and Pharmacometrics of Novel Antiretrovirals in Pregnant Women Living with HIV.
了解感染艾滋病毒孕妇的新型抗逆转录病毒药物的用药依从性基准、安全性和药理学。
  • 批准号:
    10158829
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
Collaborative Research: A Flexible Framework for Radiation Parameterizations Traceable to Benchmarks
协作研究:可追溯至基准的灵活辐射参数化框架
  • 批准号:
    1916908
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
The Law, Politics and Economics of Financial Benchmarks
金融基准的法律、政治和经济学
  • 批准号:
    20K13438
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: SciDatBench: Principles and Prototypes of Science Data Benchmarks
EAGER:SciDatBench:科学数据基准的原理和原型
  • 批准号:
    2038007
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了