Assessing the Accuracy of Self-reported Pollution Data
评估自我报告的污染数据的准确性
基本信息
- 批准号:0210069
- 负责人:
- 金额:$ 8.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information provision is increasingly used as a regulatory tool. The Environmental Protection Agency's Toxics Release Inventory (TRI) program requires manufacturing facilities that handle threshold amounts of specific chemicals to report yearly their releases and transfers of these toxic substances. This project investigates how accurate TRI data are and what factors give rise to errors or evasion in self-reporting.The proposed research uses two different methods to assess the accuracy of TRI data. For 12 of the chemicals covered by TRI reporting, the EPA samples air concentrations of these chemicals using a network of monitors across the country. Geographic information systems (GIS) software allow one to determine which polluting facilities are within range of the EPA's monitors. The researchers can thus compare how measured trends in pollution from monitoring data match self-reported trends on air releases by the polluting facilities. To investigate potential divergences between the monitoring data and TRI figures, the analysis will also explore how the nature of the surrounding community, state environmental enforcement, and company and facility-level characteristics affect the apparent accuracy of the reported TRI air emissions. The comparison of reported TRI figures with expected distributions of emissions digits offers a second way to assess the accuracy of pollution data. The key insight is that if facilities are estimating emissions with a downward bias, the overall distribution of digits will not follow the same pattern as the actual digits in the monitor data. This research will demonstrate the degree that selected physical monitoring and analysis of data patterns for statistical bias can help determine the accuracy of self-reported data.
信息提供越来越多地被用作监管工具。环境保护署的有毒物质排放清单(TRI)计划要求处理特定化学品阈值的生产设施每年报告这些有毒物质的排放和转移情况。该项目调查了TRI数据的准确性,以及在自我报告中导致错误或逃避的因素。本研究采用两种不同的方法来评估TRI数据的准确性。对于TRI报告所涵盖的12种化学物质,EPA使用遍布全国的监测网络对这些化学物质的空气浓度进行采样。地理信息系统(GIS)软件允许人们确定哪些污染设施在环境保护署的监测范围内。因此,研究人员可以比较从监测数据中测量到的污染趋势如何与污染设施自我报告的空气排放趋势相匹配。为了调查监测数据与TRI数据之间的潜在差异,分析还将探讨周围社区的性质、州环境执法以及公司和设施级别的特征如何影响报告的TRI空气排放的表面准确性。将报告的TRI数据与排放数字的预期分布进行比较,提供了评估污染数据准确性的第二种方法。关键的见解是,如果设施以向下的偏差估计排放量,那么数字的总体分布将不会遵循与监测数据中的实际数字相同的模式。本研究将证明,对统计偏差的数据模式进行选择的物理监测和分析,可以帮助确定自我报告数据的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Hamilton其他文献
Liver X receptors and copper metabolism: New frontiers for the oxysterol receptors
肝脏 X 受体和铜代谢:氧甾醇受体的新领域
- DOI:
10.1002/hep.28534 - 发表时间:
2016 - 期刊:
- 影响因子:13.5
- 作者:
James Hamilton;Svetlana Lutsenko - 通讯作者:
Svetlana Lutsenko
Quantifying lung ultrasound comets with a convolutional neural network: Initial clinical results
使用卷积神经网络量化肺部超声彗星:初步临床结果
- DOI:
10.1016/j.compbiomed.2019.02.002 - 发表时间:
2019 - 期刊:
- 影响因子:7.7
- 作者:
Xianglong Wang;Joseph S Burzynski;James Hamilton;P. Rao;W. Weitzel;J. Bull - 通讯作者:
J. Bull
Investigating controls on salt movement in extensional settings using finite-element modelling
使用有限元建模研究拉伸环境中盐运动的控制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
James Hamilton;S. Dee;Christina von Nicolai;H. Johnson - 通讯作者:
H. Johnson
OS-032 Long-term hepatitis B surface antigen response after finite treatment with siRNAs ARC-520 or JNJ-3989
- DOI:
10.1016/s0168-8278(24)00473-2 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Lung Yi Loey Mak;Christine Wooddell;Oliver Lenz;Thomas Schluep;James Hamilton;Heather Davis;Xianhua Mao;Wai-Kay Seto;Michael Biermer;Man-Fung Yuen - 通讯作者:
Man-Fung Yuen
James Hamilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Hamilton', 18)}}的其他基金
III: Medium: Collaborative Research: From Answering Questions to Questioning Answers (and Questions)---Perturbation Analysis of Database Queries
III:媒介:协作研究:从回答问题到质疑答案(和问题)——数据库查询的扰动分析
- 批准号:
1408915 - 财政年份:2014
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
RAPID: Predicting Trajectories of Post-Disaster Adjustment from Pre-Disaster Assessments of Risk and Resilience Factors
RAPID:根据灾前风险和复原力因素评估预测灾后调整轨迹
- 批准号:
1143690 - 财政年份:2011
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
NUE:USE-NanoMEMS: Undergraduate Science and Engineering Workforce Education in Nanotechnology and Microsystems
NUE:USE-NanoMEMS:纳米技术和微系统方面的本科科学与工程劳动力教育
- 批准号:
1042094 - 财政年份:2011
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
Advances in Macroeconomics and Econometrics
宏观经济学和计量经济学的进展
- 批准号:
0215754 - 财政年份:2002
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
Inventories, Oil Shocks, and Macroeconomic Dynamics
库存、石油冲击和宏观经济动态
- 批准号:
0076072 - 财政年份:2000
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
A Flexible Parametric Approach to Nonlinear Data Analysis
非线性数据分析的灵活参数方法
- 批准号:
9707771 - 财政年份:1997
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
The Federal Funds Rate and the Monetary Transmission Mechanism
联邦基金利率和货币传导机制
- 批准号:
9308301 - 财政年份:1993
- 资助金额:
$ 8.3万 - 项目类别:
Continuing Grant
Autoregressive Conditional Heteroskedasticity and Abrupt Changes in Regime
自回归条件异方差和政权突变
- 批准号:
8920752 - 财政年份:1990
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
The Economic Analysis of Systems Subject to Changes in Regime
受政权变化影响的系统的经济分析
- 批准号:
8720731 - 财政年份:1988
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in Anthropology
人类学博士论文研究
- 批准号:
7619846 - 财政年份:1976
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
相似海外基金
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 8.3万 - 项目类别:
Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
- 批准号:
22KJ1845 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Self-reflective accuracy across subclinical dimensions of psychopathology
精神病理学亚临床维度的自我反思准确性
- 批准号:
10679418 - 财政年份:2023
- 资助金额:
$ 8.3万 - 项目类别:
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2021
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2020
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2019
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Doctoral Dissertation Research: Improving the Accuracy of Juror Self-Reports of Bias during Rehabilitative Voir Dire
博士论文研究:提高陪审员在康复预审期间自我报告偏见的准确性
- 批准号:
1920404 - 财政年份:2019
- 资助金额:
$ 8.3万 - 项目类别:
Standard Grant
Determining the accuracy of self- and partner anal exams for detecting anal abnormalities.
确定自我和伴侣肛门检查检测肛门异常的准确性。
- 批准号:
10468124 - 财政年份:2018
- 资助金额:
$ 8.3万 - 项目类别:
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2018
- 资助金额:
$ 8.3万 - 项目类别:
Discovery Grants Program - Individual
Determining the accuracy of self- and partner anal exams for detecting anal abnormalities.
确定自我和伴侣肛门检查检测肛门异常的准确性。
- 批准号:
10252791 - 财政年份:2018
- 资助金额:
$ 8.3万 - 项目类别: