Mathematical Studies of the Dynamics of Excitable Systems

可兴奋系统动力学的数学研究

基本信息

  • 批准号:
    0211366
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Keener0211366 The investigator uses mathematical models and analysis tostudy the dynamics of several physiological systems in whichexcitability is a common and fundamental feature. The three broadproblem areas to be investigated are 1) The initiation and dynamics of cardiac arrhythmias; 2) The dynamics of defibrillation; 3) The dynamics of autoimmune disease.The study of these problems involves the development and use ofsophisticated mathematical models and tools, including advancednumerical methods such as immersed boundary methods, bifurcationtheory and dynamical systems theory, and asymptotic analysis.These tools are used to give theoretical understanding to problemsof border zone and ischemia related cardiac arrhythmias, APDinstabilities and their relationship to the onset and developmentof reentrant arrhythmias, mechanical alternans deriving frominstabilities of the calcium handling system or crossbridgedynamics, the success or failure of defibrillation, andoscillatory autoimmune responses. Serious attention is given toobtaining agreement between theoretical results and experimentalfindings. To that end collaborations with experimentalistsexamine gap junction coupling of rabbit myocytes, the effect ofhypertrophy on excitation-contraction coupling through thesodium-calcium exchanger, the effect of mutations on the delayedrectifier potassium channel that lead to increased proclivityfor fatal arrhythmias, and the role of mimicry in oscillatorydynamics of cystic fibrosis in mice. Excitability is one of the most important features enablingsignalling in physiological systems. It is crucial to theoperation of nerves, muscle, the heart, the immune system, andblood clotting as well as numerous gene regulatory networks. Thespecific goal of this project is to gain an improved theoreticalunderstanding of how the normal function of systems that rely onexcitability can go awry, exhibiting pathological behaviors, andhow these pathological behaviors might be controlled orprevented. The behaviors that are studied here are the result ofinterwoven interactions of simpler behaviors, resulting incomplex behaviors that defy understanding through intuition orsimple means. The investigation therefore focuses on thedevelopment and analysis of mathematical models of thesebehaviors in the belief that substantial new and importantinsights can be gained, and new hypotheses formulated that arenot apparent from phenomenological descriptions. While thisproject has as its main focus several problems relating toabnormalities of the cardiac cycle, it extends far beyond to manyareas of physiology where common principles are involved. Theproject includes a significant training component for students.
基纳0211366 研究者使用数学模型和分析来研究几个生理系统的动力学,其中兴奋性是一个共同的和基本的特征。 需要调查的三个主要问题领域是 1)心律失常的发生和动力学; 2)除颤的动力学; 3)自身免疫性疾病的动力学。这些问题的研究涉及复杂的数学模型和工具的开发和使用,包括先进的数值方法,如浸入边界方法,分叉理论和动力系统理论,以及渐近分析。这些工具用于从理论上理解边缘区和缺血相关的心律失常问题,APD不稳定性及其与折返性心律失常的发生和发展、由钙处理系统或跨桥动力学的不稳定性引起的机械交替、除颤的成功或失败以及振荡性自身免疫反应的关系。 认真注意获得理论结果和实验结果之间的协议。 为此,与实验学家合作研究了兔心肌细胞的缝隙连接偶联,肥大通过钠-钙交换对兴奋-收缩偶联的影响,突变对延迟整流钾通道的影响,导致致命性心律失常的倾向增加,以及拟态在小鼠囊性纤维化的发病动力学中的作用。 兴奋性是生理系统中最重要的信号特征之一。 它对神经、肌肉、心脏、免疫系统和血液凝固以及众多基因调控网络的运作至关重要。 该项目的具体目标是获得一个改进的理论理解,即依赖于兴奋性的系统的正常功能如何出错,表现出病理行为,以及如何控制或预防这些病理行为。 这里研究的行为是简单行为相互交织的结果,导致了复杂的行为,这些行为无法通过直觉或简单的方法来理解。 因此,调查的重点是这些行为的数学模型的发展和分析,相信可以获得大量的新的和重要的见解,并制定新的假设,从现象学的描述是不明显的。 虽然这个项目的主要焦点是与心动周期异常有关的几个问题,但它远远超出了涉及共同原则的许多生理学领域。 该项目包括对学生的重要培训部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Keener其他文献

Correction to: Red Light and the Dormancy–Germination Decision in Arabidopsis Seeds
  • DOI:
    10.1007/s11538-021-00894-4
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Cody FitzGerald;James Keener
  • 通讯作者:
    James Keener

James Keener的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Keener', 18)}}的其他基金

Computational Biofluids in Physiology
生理学中的计算生物流体
  • 批准号:
    1521930
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Modeling of the Dynamics of Cellular Processes
细胞过程动力学的数学建模
  • 批准号:
    1515130
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RTG: Research Training in Mathematical and Computational Biology
RTG:数学和计算生物学研究培训
  • 批准号:
    1148230
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Modelling of the Dynamics of Cellular Processes
细胞过程动力学的数学建模
  • 批准号:
    1122297
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Investigations of the Dynamics of Cellular Physiological Processes
细胞生理过程动力学的数学研究
  • 批准号:
    0718036
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Research Training Group in Mathematical and Computational Biology
EMSW21-RTG:数学和计算生物学研究培训组
  • 批准号:
    0354259
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
IGERT: Cross-Disciplinary Research Training in Mathematical Biology
IGERT:数学生物学跨学科研究培训
  • 批准号:
    0217424
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cross-Disciplinary Research Training in Mathematical Biology
数学生物学跨学科研究培训
  • 批准号:
    0125047
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Studies of Excitability in Physiological Systems
生理系统兴奋性的数学研究
  • 批准号:
    9970086
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Wave Propagation in Cardiac Tissue
数学科学:心脏组织中的波传播
  • 批准号:
    9626334
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Studies on mathematical models for infectious diseases based on structured population dynamics
基于结构化群体动力学的传染病数学模型研究
  • 批准号:
    22K03433
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Studies of Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    RGPIN-2017-06588
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies of Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    RGPIN-2017-06588
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies of Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    RGPIN-2017-06588
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies of Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    RGPIN-2017-06588
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies of Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    RGPIN-2017-06588
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies in Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    7901-2012
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies in Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    7901-2012
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Studies in Quantum Dynamics of Matter and Radiation
物质和辐射的量子动力学的数学研究
  • 批准号:
    7901-2012
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modeling and computational studies for proliferation kinetics of tumor growth with spatial-temporal dynamics
时空动力学肿瘤生长增殖动力学的数学建模和计算研究
  • 批准号:
    1308948
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了