Mathematical Modeling of the Dynamics of Cellular Processes
细胞过程动力学的数学建模
基本信息
- 批准号:1515130
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to bring to bear the tools of mathematics to gain an improved theoretical and quantitative understanding of the fundamental processes underlying the function of biological organisms. This research will examine the mechanisms underlying cell behavior including processes such as movement, direction finding, regulation of protein content, construction of complex substructures, communication between cells, information processing, and decision making. The strategy for this investigation is to construct mathematical models of these processes that are based on the underlying physical and chemical mechanisms, with the intent of demonstrating and understanding how the individual components fit and work together to give coordinated, higher level behavior. A major component of this project is the training of graduate students to do collaborative, interdisciplinary research and teaching. The combined effect of these efforts will be to communicate to the broader scientific community the importance and power of mathematics to understanding biology, to help build bridges of collaboration between mathematicians and biologists, and to bring new researchers into the field of mathematical biology. The research component of this proposal is to use mathematical methods to study a variety of biological problems broadly identified as the dynamics of cellular physiological processes. Specific projects include study of ephaptic coupling of cardiac cells, regulation of the construction of flagellar rotary motors and control of their rotation direction, protein trafficking, force generation by depolymerization of microtubules during cell division, and the beating motion of cilia. While the details of the biology of each of the projects are quite different, their mathematical descriptions contain many common features and rely on common principles and transferable concepts, and it is the commonality of mathematics that unifies this work. In particular, principles of mathematical modeling, dynamical systems theory, bifurcation theory, asymptotic analysis, homogenization and multi-scale analysis, stochastic processes, and numerical simulation will all be used in this work. Thus, this work brings the tools of modern applied mathematics to bear on challenging and complex problems of biology while pushing forward the frontiers of applied mathematics. The combination of diverse biological problems and sophisticated mathematical tools is expected to result in novel and unexpected insights into the way cells function.
该项目的目标是利用数学工具,对生物有机体功能的基本过程进行改进的理论和定量理解。本研究将探讨细胞行为的机制,包括运动、定向、蛋白质含量的调节、复杂亚结构的构建、细胞间的通信、信息处理和决策。本研究的策略是构建基于潜在物理和化学机制的这些过程的数学模型,目的是演示和理解单个组件如何配合并一起工作以提供协调的、更高层次的行为。该项目的一个主要组成部分是培养研究生进行合作,跨学科的研究和教学。这些努力的综合效果将是向更广泛的科学界传达数学对理解生物学的重要性和力量,帮助数学家和生物学家之间建立合作的桥梁,并将新的研究人员引入数学生物学领域。该提案的研究部分是使用数学方法来研究各种生物问题,这些问题被广泛地确定为细胞生理过程的动力学。具体项目包括心脏细胞的外缘偶联、鞭毛旋转马达的构建及其旋转方向的调控、蛋白质运输、细胞分裂过程中微管解聚产生的力以及纤毛的跳动运动。虽然每个项目的生物学细节都有很大的不同,但它们的数学描述包含了许多共同的特征,并依赖于共同的原则和可转移的概念,正是数学的共性将这项工作统一起来。特别是,数学建模原理、动力系统理论、分岔理论、渐近分析、均匀化和多尺度分析、随机过程和数值模拟都将在这项工作中使用。因此,这项工作带来了现代应用数学的工具承担生物学的挑战性和复杂的问题,同时推动了应用数学的前沿。不同的生物学问题和复杂的数学工具的结合,预计将导致对细胞功能的新颖和意想不到的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Keener其他文献
Correction to: Red Light and the Dormancy–Germination Decision in Arabidopsis Seeds
- DOI:
10.1007/s11538-021-00894-4 - 发表时间:
2021-05-11 - 期刊:
- 影响因子:2.200
- 作者:
Cody FitzGerald;James Keener - 通讯作者:
James Keener
James Keener的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Keener', 18)}}的其他基金
Computational Biofluids in Physiology
生理学中的计算生物流体
- 批准号:
1521930 - 财政年份:2015
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
RTG: Research Training in Mathematical and Computational Biology
RTG:数学和计算生物学研究培训
- 批准号:
1148230 - 财政年份:2012
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Mathematical Modelling of the Dynamics of Cellular Processes
细胞过程动力学的数学建模
- 批准号:
1122297 - 财政年份:2011
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mathematical Investigations of the Dynamics of Cellular Physiological Processes
细胞生理过程动力学的数学研究
- 批准号:
0718036 - 财政年份:2007
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
EMSW21-RTG: Research Training Group in Mathematical and Computational Biology
EMSW21-RTG:数学和计算生物学研究培训组
- 批准号:
0354259 - 财政年份:2004
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Mathematical Studies of the Dynamics of Excitable Systems
可兴奋系统动力学的数学研究
- 批准号:
0211366 - 财政年份:2002
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
IGERT: Cross-Disciplinary Research Training in Mathematical Biology
IGERT:数学生物学跨学科研究培训
- 批准号:
0217424 - 财政年份:2002
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Cross-Disciplinary Research Training in Mathematical Biology
数学生物学跨学科研究培训
- 批准号:
0125047 - 财政年份:2001
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mathematical Studies of Excitability in Physiological Systems
生理系统兴奋性的数学研究
- 批准号:
9970086 - 财政年份:1999
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Wave Propagation in Cardiac Tissue
数学科学:心脏组织中的波传播
- 批准号:
9626334 - 财政年份:1996
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Mathematical modeling for the simultaneous collective response in epidemic population dynamics
流行病人口动态中同步集体反应的数学模型
- 批准号:
22K03430 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
- 批准号:
10687049 - 财政年份:2020
- 资助金额:
$ 21.5万 - 项目类别:
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
- 批准号:
10266158 - 财政年份:2020
- 资助金额:
$ 21.5万 - 项目类别:
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
- 批准号:
10474556 - 财政年份:2020
- 资助金额:
$ 21.5万 - 项目类别:
Using mathematical modeling to determine human immunodeficiency virus dynamics
使用数学模型确定人类免疫缺陷病毒动态
- 批准号:
552813-2020 - 财政年份:2020
- 资助金额:
$ 21.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematical Modeling of Robust Spatiotemporal Dynamics in Epidermal Development
表皮发育中鲁棒时空动力学的数学模型
- 批准号:
1853636 - 财政年份:2019
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mathematical Modeling, Computational and Experimental Investigation of the Dynamics of Heterogeneity in Breast Cancer
乳腺癌异质性动力学的数学建模、计算和实验研究
- 批准号:
1853365 - 财政年份:2019
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Mathematical Modeling of Population Dynamics
人口动态的数学模型
- 批准号:
525423-2018 - 财政年份:2018
- 资助金额:
$ 21.5万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical modeling of dynamics of incompatible domain structure in shape memory alloy(Fostering Joint International Research)
形状记忆合金中不相容域结构动力学的数学建模(促进国际联合研究)
- 批准号:
16KK0122 - 财政年份:2017
- 资助金额:
$ 21.5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)














{{item.name}}会员




