Mathematical Models For Processes in Bacterial Cell Division
细菌细胞分裂过程的数学模型
基本信息
- 批准号:0214585
- 负责人:
- 金额:$ 17.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drew0214585 The investigator derives and studies mathematical models forseveral different processes involved with cell division, focusingon E. coli cells because of the wealth of data available. Amature cell replicates its DNA. The daughter DNA strands mustmove into the halves of the mature cell, and finally, the celldivides. The relative timing of these events is crucial for thedivision into viable daughter cells, and placement of the septummust divide the cell and its DNA into relatively equal halves.Once replication begins,the cell then must become unable to startreplication again until the cell is sufficiently mature.Sequestration is responsible for this eclipse period, where thenew DNA strand binds to sites in the membrane, thereby blockingthe oriC site and dnaA transcription regulation site, keeping thereplication initiation from occurring too soon. This process ofsequestration and de-sequestration is therefore (at leastpartially) responsible for the timing of cell division events.The mathematical model predicts the probability of each of thesequestration sites being sequestered, as a function of time. Thereplicated DNA strands are moved apart in the longitudinaldirection (towards the cell poles) in order to assure exactly oneset of chromosomes in each daughter cell. The process by whichthis occurs is unknown, but the timing of this event is crucialto viability. The project studies viable models for thisseqregation. The site for septation is marked by formation of aZ-ring at the center of the rod-shaped cell, halfway between thepoles. This Z-ring is involved in causing the cell to form aseptum between the daughter halves. Placement of the Z-ring atthe center is a result of the cooperative actions of threeproteins from the min locus of the DNA. Three proteins behave inan oscillatory manner, with MinD alternately forming a layer onthe cell membrane near one pole, then disassembling andre-forming at the other pole. The investigator studies a modelfor the dynamics of the Min system. The investigaor develops mathematical models to improve theunderstanding of the biology of cell division in E. coli. Thebasic philosophy is to determine mechanisms that can describeobserved events, and to evaluate whether these mechanisms canoperate for reasonable parameter values, that is, whether thekinetic rates, diffusivities, and concentrations are withinreasonable ranges of observed values. Location and timing ofcellular events is an important aspect of molecular biology.Moreover, mathematical models that incorporate intracellulartransport and reactions, including reactions with organelles,should prove to be of general applicability to cellular biology.Such models can focus biological research on aspects of moleculardynamics that otherwise seem unconnected.
Drew0214585 研究者推导并研究了细胞分裂的几个不同过程的数学模型,重点是E。大肠杆菌细胞,因为有丰富的数据可用。 成熟细胞复制其DNA。 子DNA链必须移动到成熟细胞的两半中,最后,细胞分裂。 这些事件的相对时间对于分裂成可存活的子细胞是至关重要的,隔膜的放置必须将细胞及其DNA分成相对相等的两半。一旦复制开始,细胞就必须变得无法再次开始复制,直到细胞足够成熟。隔离是这个日食期的原因,在此期间,新的DNA链与膜上的位点结合,从而阻断oriC位点和dnaA转录调节位点,防止复制起始过快发生。 因此,这种隔离和解除隔离的过程(至少部分)决定了细胞分裂的时间。数学模型预测了每个隔离点被隔离的概率,作为时间的函数。 重复的DNA链在纵向方向(朝向细胞两极)分开,以确保每个子细胞中只有一组染色体。 这种情况发生的过程是未知的,但这一事件的时间是至关重要的可行性。 该项目研究了这一领域的可行模式。 在杆状细胞的中心,两极之间的中间位置,Z环的形成标志着分隔的位置。 这个Z环参与导致细胞在子半体之间形成无隔膜。 Z环的位置是来自DNA最小位点的三种蛋白质协同作用的结果。 三种蛋白质的行为都是以振荡的方式进行的,MinD交替地在细胞膜的一极附近形成一层,然后在另一极分解和重新形成。 研究者研究了Min系统的动力学模型。 研究者建立了数学模型,以提高对大肠杆菌细胞分裂生物学的理解。杆菌 其基本思想是确定能够描述观测事件的机制,并评估这些机制是否能够在合理的参数值下运行,即动力学速率、扩散系数和浓度是否在观测值的合理范围内。 细胞事件发生的位置和时间是分子生物学的一个重要方面。此外,结合细胞内运输和反应(包括细胞器反应)的数学模型应该被证明对细胞生物学具有普遍适用性。这样的模型可以将生物学研究集中在分子动力学的各个方面,否则这些方面似乎是不相关的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Drew其他文献
Donald Drew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Drew', 18)}}的其他基金
Mathematical Sciences: Rensselaer-BBN Graduate Research Assistanship
数学科学:伦斯勒-BBN 研究生研究援助
- 批准号:
9508662 - 财政年份:1995
- 资助金额:
$ 17.91万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical Models of Microbial Processes
微生物过程的数学模型
- 批准号:
541805-2019 - 财政年份:2019
- 资助金额:
$ 17.91万 - 项目类别:
University Undergraduate Student Research Awards
Innovation for mathematical medical applications of models based on stochastic processes.
基于随机过程的模型的数学医学应用创新。
- 批准号:
17K05358 - 财政年份:2017
- 资助金额:
$ 17.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving monitoring data utility in acute care medicine using mechanistic mathematical models of physiological processes
使用生理过程的机械数学模型提高急症护理医学中的监测数据效用
- 批准号:
192127833 - 财政年份:2011
- 资助金额:
$ 17.91万 - 项目类别:
Research Grants
Mathematical Models of Working Memory Processes in Externalizing Psychopathology
外化精神病理学中工作记忆过程的数学模型
- 批准号:
8065326 - 财政年份:2011
- 资助金额:
$ 17.91万 - 项目类别:
Mathematical models for ecological processes in rivers and fragmented habitats
河流和分散栖息地生态过程的数学模型
- 批准号:
326416-2006 - 财政年份:2010
- 资助金额:
$ 17.91万 - 项目类别:
Discovery Grants Program - Individual
Mathematical models for ecological processes in rivers and fragmented habitats
河流和分散栖息地生态过程的数学模型
- 批准号:
326416-2006 - 财政年份:2009
- 资助金额:
$ 17.91万 - 项目类别:
Discovery Grants Program - Individual
Optimal Mathematical Models of Renal Transport Processes
肾脏转运过程的优化数学模型
- 批准号:
7896851 - 财政年份:2008
- 资助金额:
$ 17.91万 - 项目类别:
FRG: Collaborative Research: Prediction and Risk of Extreme Events Utilizing Mathematical Computer Models of Geophysical Processes
FRG:协作研究:利用地球物理过程的数学计算机模型预测极端事件和风险
- 批准号:
0757367 - 财政年份:2008
- 资助金额:
$ 17.91万 - 项目类别:
Continuing Grant
Optimal Mathematical Models of Renal Transport Processes
肾脏转运过程的优化数学模型
- 批准号:
7498090 - 财政年份:2008
- 资助金额:
$ 17.91万 - 项目类别:
FRG: Collaborative Research: Prediction and Risk of Extreme Events Utilizing Mathematical Computer Models of Geophysical Processes
FRG:协作研究:利用地球物理过程的数学计算机模型预测极端事件和风险
- 批准号:
0757549 - 财政年份:2008
- 资助金额:
$ 17.91万 - 项目类别:
Continuing Grant