Virus-Inspired Declarative Geometric Computation

受病毒启发的声明式几何计算

基本信息

  • 批准号:
    0218435
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

EIA-0218435Meera SitharamUniversity of Florida Virus-Inspired Declarative Geometric ComputationThe goal of the project is to develop geometric computational models and tools for virus assembly from their constituent proteins, and virus crystal packing. Furthermore, inspiration of the above processes is being used to rethink computationally tractable declarative geometry (DG), defined as the intuitive, constraint-based representation and efficient realization of composites of simple interacting geometric objects, starting from a declarative specification of the composite's properties. In particular, a new game-theoretic constraint model is being developed for the underlying class of algebraic-geometric computations and corresponding algebraic varieties. Existing software in the form of the PI's geometric constraint solver FRONTIER is forming the base for implementing the new computational framework. The new virus computational models is used for the studying the following unanswered questions on carefully chosen, geometrically significant viruses: (a) the isolation of crucial geometric events during assembly (helpful for disrupting assembly); (b) the isolation of assembly events - such as molecular conformational changes - that require the involvement of viral genomic material, (helpful for understanding DNA-protein interactions); and (c) the isolation of key geometric events during virus crystallization (as an idealized version of molecular crystallization).The new DG virus models is being refined and validated by checking consistency with known behavior of viruses and their constituent proteins during assembly and crystallization. A small number of other highly focused experiments; selective X-ray crystallography and/or cryoelectron microscopy is being performed. As a significant player to help with both of the above goals, use the distinctive Maize-streak virus (MSV) will be used, whose structure and properties are particularly suited to goals of the project. A comparison of the new geometric virus models with other geometry-based computational virus models is being made.
EIA-0218435 Meera Sitharam佛罗里达大学病毒启发的声明性几何计算该项目的目标是开发几何计算模型和工具,用于从其组成蛋白质和病毒晶体包装中组装病毒。此外,上述过程的灵感被用来重新思考计算上易处理的声明性几何(DG),定义为直观的,基于约束的表示和有效实现的简单的交互几何对象的复合材料,从复合材料的属性的声明性规范开始。特别是,一个新的博弈论约束模型正在开发的基本类的代数几何计算和相应的代数品种。PI的几何约束求解器FRONTIER形式的现有软件正在形成实施新的计算框架的基础。新的病毒计算模型被用于研究以下关于精心选择的、具有几何意义的病毒的未回答的问题:(a)在组装过程中关键几何事件的隔离(有助于破坏装配);(B)分离装配事件-如分子构象变化-其需要病毒基因组物质的参与,(有助于理解DNA-蛋白质相互作用);以及(c)病毒结晶过程中关键几何事件的分离(作为分子结晶的理想化版本)新的DG病毒模型正在通过检查与病毒及其组成蛋白在组装过程中的已知行为的一致性进行改进和验证。和结晶。正在进行少数其他高度集中的实验;选择性X射线晶体学和/或冷冻电子显微镜。作为帮助实现上述两个目标的重要参与者,将使用独特的玉米条纹病毒(MSV),其结构和特性特别适合该项目的目标。新的几何病毒模型与其他基于几何的计算病毒模型的比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meera Sitharam其他文献

Combinatorial decomposition, generic independence and algebraic complexity of geometric constraints systems: applications in biology and engineering
几何约束系统的组合分解、泛型独立性和代数复杂性:在生物学和工程中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;Yong Zhou
  • 通讯作者:
    Yong Zhou
Pseudorandom generators and learning algorithms forAC 0
  • DOI:
    10.1007/bf01206321
  • 发表时间:
    1995-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Meera Sitharam
  • 通讯作者:
    Meera Sitharam
Generalized Boolean Hierarchies and Boolean Hierarchies Over RP (Conference Abstract)
广义布尔层次结构和 RP 上的布尔层次结构(会议摘要)
Configuration spaces of linkages
连杆配置空间
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;Menghan Wang
  • 通讯作者:
    Menghan Wang
Modeling Virus Self-Assembly Pathways Using Computational Algebra and Geometry
使用计算代数和几何对病毒自组装途径进行建模
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meera Sitharam;M. Agbandje
  • 通讯作者:
    M. Agbandje

Meera Sitharam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meera Sitharam', 18)}}的其他基金

Collaborative Research: Geometric Elucidation of Supramolecular Assembly and Allostery with Experimental Validation
合作研究:超分子组装和变构的几何阐明与实验验证
  • 批准号:
    1563234
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Stability of Structures Large and Small
FRG:合作研究:大大小小的结构的稳定性
  • 批准号:
    1564480
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MPS: BIO: Theory, Algorithms, Software, for Predicting Geometric Entropy-driven Virus Assembly, using Multiscale Configuration Space Atlasing and Combinatorial Enumeration
MPS:BIO:使用多尺度配置空间图谱和组合枚举来预测几何熵驱动的病毒组装的理论、算法、软件
  • 批准号:
    1122541
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Multiscale Macromolecular Assembly Pathways via Algebraic Combinatorics
通过代数组合的多尺度大分子组装途径
  • 批准号:
    0714912
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Geometry and Tensegrity Based Computational Modeling of Birus Assembly Pathways
NER:基于几何和张拉整体的 Birus 组装路径计算模型
  • 批准号:
    0404116
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Supplement: POWRE: Analysis of Specialized Constraint Models for Engineering Design
REU 补充:POWRE:工程设计专用约束模型分析
  • 批准号:
    0096104
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Capturing Multilayered Design Intent using Efficient Constraint Decomposition
使用有效的约束分解捕获多层设计意图
  • 批准号:
    9902025
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
POWRE: Analysis of Specialized Constraint Models for Engineering Design
POWRE:工程设计专用约束模型分析
  • 批准号:
    9870404
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Foundations and Mathematical Aspects of Computer Science (An AMS session) to be held at Kent State University, November,l995
计算机科学的基础和数学方面(AMS 会议)将于 1995 年 11 月在肯特州立大学举行
  • 批准号:
    9529950
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RIA: Proving Circuit Complexity Bounds Using Classical Analytic Methods
RIA:使用经典分析方法证明电路复杂性界限
  • 批准号:
    9409809
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
  • 批准号:
    EP/Y026284/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了