SGER: Topological Issues of Intersection Curves

SGER:交集曲线的拓扑问题

基本信息

项目摘要

ABSTRACT0231511Nicholas M. PattrikalakisMass Inst. of TechWe propose to study the topology of the union of a finite collection of boxes that covers anintersection curve in the plane and in 3D space. The representation of curves that are theresult of surface intersections is nearly never exact, and thus certain approximations schemes areemployed. The result is often a piecewise linear approximation cl, which lies within a certainneighborhood N, of the actual curve c. Much of the research in this area has been focused onthe approximation cl of c and how c and cl are/are not similar. We propose to develop suficientconditions on the collection of the boxes and the intersection curve, so that the resulting unionof the collection is a topological manifold homotopically equivalent to the given curve. In thecase where the curve has no self-intersections, this collection can serve as another means ofrepresenting the curve, and thus this new representation can be used in a variety of engineeringapplications. We believe this to be an innovative exploratory study appropriate for SGERfunding.
尼古拉斯·M·帕特里卡拉基斯马萨诸塞州。我们建议研究覆盖平面和3D空间中相交曲线的有限个盒集合的并的拓扑。作为曲面交点结果的曲线的表示几乎从来都不是精确的,因此采用了某些近似方案。其结果通常是位于实际曲线C的某个邻域N内的分段线性逼近CL。这一领域的许多研究都集中在C的逼近CL以及C和CL如何相似/不相似上。我们给出了盒和相交曲线的集合的充分条件,使得得到的集合的单位是与给定曲线同伦等价的拓扑流形。在曲线没有自交点的情况下,这个集合可以作为另一种表示曲线的方法,因此这种新的表示可以在各种工程应用中使用。我们认为这是一项创新的探索性研究,适合为SGER提供资金。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Patrikalakis其他文献

Knowledge-based interpretation of architectural drawings
  • DOI:
    10.1007/bf01580842
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Jonathan Cherneff;Robert Logcher;Jerome Connor;Nicholas Patrikalakis
  • 通讯作者:
    Nicholas Patrikalakis

Nicholas Patrikalakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Patrikalakis', 18)}}的其他基金

SGER: Physics-Based Similarity Detection Algorithms of CAD Models
SGER:基于物理的 CAD 模型相似性检测算法
  • 批准号:
    0629332
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Support for Student Attendance at the ACM Symposium on Solid and Physical Modeling; June 13-15, 2005; Cambridge, MA
支持学生参加 ACM 实体和物理建模研讨会;
  • 批准号:
    0529916
  • 财政年份:
    2005
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Proposal To Support Student Attendance at the IEEE International Conference on Shape Modeling and Applications
支持学生参加 IEEE 国际形状建模和应用会议的提案
  • 批准号:
    0529913
  • 财政年份:
    2005
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
ITR/AP+IM: Poseidon - Rapid Real-Time Interdisciplinary Ocean Forecasting: Adaptive Sampling and Adaptive Modeling in a Distributed Environment
ITR/AP IM:Poseidon - 快速实时跨学科海洋预报:分布式环境中的自适应采样和自适应建模
  • 批准号:
    0121263
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing grant
Invitational Workshop on Distributed Information, Computation, and Process Management for Scientific and Engineering Environments
科学与工程环境分布式信息、计算和过程管理邀请研讨会
  • 批准号:
    9812601
  • 财政年份:
    1998
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Towards a New Generation of Robust Interrogation Methods in Computer-Aided Design and Computer-Aided Manufacturing
计算机辅助设计和计算机辅助制造中的新一代稳健询问方法
  • 批准号:
    9500394
  • 财政年份:
    1995
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
NSF Design and Manufacturing Grantees Conference; Boston, Massachusetts; January 5-7, 1994
NSF 设计与制造受资助者会议;
  • 批准号:
    9312274
  • 财政年份:
    1993
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
High-Dimensional Databases for Continuous Physical Phenomenawith Uncertainty
具有不确定性的连续物理现象的高维数据库
  • 批准号:
    9224640
  • 财政年份:
    1993
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Towards a New Generation of Robust CAD/CAM Systems
迈向新一代稳健的 CAD/CAM 系统
  • 批准号:
    9215411
  • 财政年份:
    1992
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
An Investigation on Surface-to-Surface Intersection Problems
面对面相交问题的研究
  • 批准号:
    8720720
  • 财政年份:
    1988
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing grant

相似海外基金

Topological semiconductors resonate with an elusive form of radiation
拓扑半导体与难以捉摸的辐射形式产生共振
  • 批准号:
    DP240101062
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Topological phonons in solids
固体中的拓扑声子
  • 批准号:
    DE240100627
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Early Career Researcher Award
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Fellowship Award
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了