Calculation of Protein-ligand Binding Affinity

蛋白质-配体结合亲和力的计算

基本信息

  • 批准号:
    0235440
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-01-15 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this research is to understand the basis of molecular recognition in biology. The overall objective is to calculate the binding constant from the structure and chemical properties of the molecules taking part in a reaction to understand the biochemical basis for high affinity binding. The research will use recent theoretical advances in the statistical mechanical treatment of binding, developments in methods for computer simulation of biomolecules, and recent experimental data on protein-ligand complexes. The basic method is to evaluate, using computer simulations, the appropriately weighted interaction free energy between protein and ligand by integrating over all the relevant degrees of freedom of the system: translational, rotational, internal and solvent, leading directly to evaluation of the binding constant. Molecular mechanics methods will be used for the first three components. Implicit solvent methods will be used to render the latter, most expensive integration, tractable. Recent algorithms for implicit solvation are, for the first time, accurate and fast enough to be used within the molecular mechanics integration step, so that the entire calculation can be done in a self-consistent way in a practical amount of computer time. Biological recognition is a fundamental property of proteins and other macromolecules. All living things contain proteins and many life processes rely on the right protein 'recognizing' the right molecule at the right time. A protein may be said to recognize another molecule when it attracts that molecule more strongly, and binds to it more tightly, than the many other molecules present. Strong attraction or binding depends on the protein being complementary in its shape and chemical properties to its binding partner. However, even if the detailed structures of the protein and its target are known, it is not enough to determine how tightly they will bind. To determine this, one would need to know all the different forces that act to attract or repel the two molecules, and sum them up accurately. Since thousands of atoms are involved, this is a formidable task. The approach is to construct a simulation of the protein and its binding partner in their environment on the computer, encoding the laws of physics and chemistry to describe how all the atoms interact, then 'run' computer simulation to determine how tightly the two bind, test the results against experiment, improve the description and repeat, iteratively making the simulation more realistic. This software for simulating protein recognition will be made available to the wider research and teaching community. Software to realistically simulate protein recognition would help researchers understand at a molecular level basic processes in living organisms, such as how cells communicate, and help train students in the principles of molecular recognition & simulation of molecules with computers. Specifically, this software will be used in the yearly course for graduates and undergraduates at the University of Pennsylvania, developed and taught by the PI entitled "Molecular modeling."
这项研究的目的是了解生物学中分子识别的基础。总体目标是从参与反应的分子的结构和化学性质计算结合常数,以了解高亲和力结合的生物化学基础。该研究将利用结合的统计力学处理的最新理论进展,生物分子计算机模拟方法的发展,以及蛋白质-配体复合物的最新实验数据。 基本方法是使用计算机模拟,通过整合系统的所有相关自由度(平移、旋转、内部和溶剂)来评估蛋白质和配体之间适当加权的相互作用自由能,从而直接评估结合常数。 分子力学方法将用于前三个组成部分。 隐式溶剂的方法将被用来使后者,最昂贵的集成,易于处理。隐式溶剂化的最新算法第一次足够精确和快速地用于分子力学积分步骤中,因此整个计算可以在实际的计算机时间内以自洽的方式完成。 生物识别是蛋白质和其他大分子的基本性质。所有生物都含有蛋白质,许多生命过程都依赖于正确的蛋白质在正确的时间“识别”正确的分子。 当一个蛋白质比其他许多分子更强烈地吸引另一个分子,并与之更紧密地结合时,可以说它识别另一个分子。 强吸引力或结合取决于蛋白质在其形状和化学性质上与其结合伴侣互补。 然而,即使蛋白质及其靶标的详细结构已知,也不足以确定它们将结合得有多紧密。为了确定这一点,人们需要知道吸引或排斥两个分子的所有不同的力,并准确地将它们相加。 由于涉及数千个原子,这是一项艰巨的任务。 该方法是在计算机上构建蛋白质及其结合伴侣在其环境中的模拟,编码物理和化学定律以描述所有原子如何相互作用,然后“运行”计算机模拟以确定两者结合的紧密程度,根据实验测试结果,改进描述并重复,迭代使模拟更加真实。 这一模拟蛋白质识别的软件将提供给更广泛的研究和教学界。逼真地模拟蛋白质识别的软件将帮助研究人员在分子水平上了解生物体的基本过程,例如细胞如何交流,并帮助培养学生使用计算机模拟分子的分子识别原理。 具体来说,该软件将用于宾夕法尼亚大学研究生和本科生的年度课程,由PI开发和教授,名为“分子建模”。"

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim Sharp其他文献

Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism
  • DOI:
    10.1016/j.jsbmb.2024.106641
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrea Andress Huacachino;Anna Chung;Kim Sharp;Trevor M. Penning
  • 通讯作者:
    Trevor M. Penning
KLF5 Is a Key Regulator of IMiD-Induced Neutropenia
  • DOI:
    10.1182/blood-2024-207135
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Simoglou Karali;Simone G Riva;Sally-Ann Clark;E. Ravza Gür;Nicholas Denny;Roman Doll;Anastasia Kosmidou;Assunta Adamo;Shady Adnan Awad;Srinivasa Adusumalli;Jiangpeikun Song;Sean Wen;Nikolaos Sousos;Eleni Louka;Nawshad Hayder;Kim Sharp;William E. Pierceall;Anjan Thakurta;Anita K. Gandhi;Patrick R. Hagner
  • 通讯作者:
    Patrick R. Hagner
Constructing a Computational Workflow for the Identification of Novel Cellular and Molecular Drivers of Human Granulopoiesis
  • DOI:
    10.1182/blood-2024-207224
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Simone G Riva;Christina Simoglou Karali;E. Ravza Gür;Martin Sergeant;Edward Sanders;Sally-Ann Clark;Nicholas Denny;Roman Doll;Anastasia Kosmidou;Assunta Adamo;Shady Adnan Awad;Srinivasa Adusumalli;Jiangpeikun Song;Sean Wen;Nikolaos Sousos;Eleni Louka;Nawshad Hayder;Kim Sharp;William E. Pierceall;Anjan Thakurta
  • 通讯作者:
    Anjan Thakurta

Kim Sharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim Sharp', 18)}}的其他基金

Theoretical Studies of Protein-Ligand Binding Energetics and Kinetics
蛋白质-配体结合能量学和动力学的理论研究
  • 批准号:
    9808202
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Theoretical Studies of Antibody-Antigen Binding
抗体-抗原结合的理论研究
  • 批准号:
    9506900
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Theoretical Studies of Antibody-Antigen Binding
抗体-抗原结合的理论研究
  • 批准号:
    9220477
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
  • 批准号:
    32372636
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
抑制Protein Kinase D促进胚胎干细胞自我更新的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
凡纳滨对虾Laccase-like protein非酶活依赖参与抗WSSV免疫的分子机制
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
玉米基因Dirigent protein 4的克隆和功能鉴定
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C1q/TNF-related protein 9调控平滑肌细胞程序性坏死抑制动脉粥样硬化的机制研究
  • 批准号:
    81900309
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Ligand-tethered Cu-responsive protein labeling chemical tool for visualizing Cu-release at synaptic cleft
开发配体束缚的铜响应蛋白标记化学工具,用于可视化突触间隙铜的释放
  • 批准号:
    22KJ1889
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Intrinsically Disordered Protein Structural Dynamics from Combined Solution and Gas-Phase Approaches
结合溶液和气相方法的本质无序蛋白质结构动力学
  • 批准号:
    10714896
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
  • 批准号:
    10587455
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Roles of Heme and Protein Conformation in Ligand Binding Cooperativity and Selectivity in Bacterial Globin Coupled Sensors
血红素和蛋白质构象在细菌球蛋白耦合传感器中配体结合协同性和选择性中的作用
  • 批准号:
    2312149
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
  • 批准号:
    2300475
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Molecular evolution of protein oligomers aiming to the expression of ligand-binding cooperativity
旨在表达配体结合协同性的蛋白质寡聚物的分子进化
  • 批准号:
    23K04932
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel Immunotherapy Strategy for Head and Neck Squamous Cell Carcinoma by Stimulating Anticancer Immunity Using Programmed Cell Death Protein Ligand 1 and B7 Homolog 3 Inhibitors
使用程序性细胞死亡蛋白配体 1 和 B7 同源物 3 抑制剂刺激抗癌免疫,开发头颈鳞状细胞癌的新型免疫治疗策略
  • 批准号:
    23K15972
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sulfotyrosine, an essential determinant for diverse protein-protein interactions
磺基酪氨酸,多种蛋白质-蛋白质相互作用的重要决定因素
  • 批准号:
    10545692
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Disease-Associated Mutations and Ligand Activation of the Adhesion G Protein-Coupled Receptor ADGRB2
粘附 G 蛋白偶联受体 ADGRB2 的疾病相关突变和配体激活
  • 批准号:
    10811019
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了