Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
基本信息
- 批准号:10587455
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalACE2AffinityAlgorithmsAntibodiesBasic ScienceBedsBindingBinding ProteinsBinding SitesBiologicalBiologyBlocking AntibodiesCoagulation ProcessComputer SimulationCyclic PeptidesDNADNA StructureDiseaseDockingEvolutionFeedbackFibrinFibrinogenGeometryGrainHealthImageImmobilizationIndividualLibrariesLigand BindingLigandsLightLiteratureLocationMeasuresMembrane ProteinsMethodsMolecularMultiprotein ComplexesMutateMutationNanostructuresPeptidesPhage DisplayPolymersPositioning AttributeProcessProtein EngineeringProteinsReportingSARS-CoV-2 inhibitorSARS-CoV-2 spike proteinSeriesShapesSiteSpecificityStructureSurfaceSystemTestingTranslationsVariantWorkdesignflexibilityhybrid proteinimaging agentin silicomonomermutantnanonanobodiesnanoscaleneutralizing antibodynext generationnovelnovel therapeuticspolymerizationpolypeptideprocess optimizationprotein complexprotein protein interactionreceptorscaffoldsimulationsmall moleculesynthetic antibodiestargeted agent
项目摘要
Project Summary
Protein-protein interactions (PPIs) drive countless processes in biology. The ability to block these interactions
with high specificity is crucial for probing the basic science of these processes, as well as for developing imaging
agents or novel therapeutics. However, most traditional molecules for blocking protein-protein interactions—like
small molecules, peptides, or antibodies—rely on the precise targeting of the crucial interface or binding pocket,
which can be difficult for some targets. Furthermore, none of these approaches can be easily tuned to match the
valency or size of the target, and binding to patches on the protein not directly involved in PPIs can fail to block
activity. Here, we propose to develop a nanoscale synthetic antibody (“nano-synbody”) consisting of a tunable
DNA nanostructure bearing 2-3 peptide/protein ligands that can bind to distinct surfaces of a target protein and
block its association with its partner through the steric bulk of the DNA structure. The individual peptide/protein
binding agents will be derived from either known molecules, or found independently through methods like phage
display. Critically, our method merges computational simulation—and in silico “evolution”—of these hybrid
protein-DNA nano-synbodies, creating a library of structures and probing their association with the target. We
aim to create a feedback loop, whereby the computational simulations yield candidate nano-synbodies that can
be experimentally tested, further informing the next round of simulations. We will first apply this pipeline to a
homo-trimeric nano-synbody against the SARS-CoV-2 spike protein trimer (Aim 1). This test bed will allow us to
optimize the process and find a high-affinity blocking structure. Then, we will apply our method to nano-synbodies
for blocking the assembly of fibrinogen into fibrin clots (Aim 2). The second Aim will involve phage display against
fibrin to find novel binding agents, and thereby convert them into high-affinity hetero-trivalent structures. In both
Aims, we will demonstrate the advantage of nano-structuring ligand presentation over simple oligomerization
with flexible linkers. Taken together, our work will generate a new computational-experimental paradigm for the
design of tunable, user-defined nanostructures that can present three or more peptides/proteins for binding to
any protein, and blocking its association with its target. Crucially, our approach does not require binding directly
to the interface, which should enable it to target a much larger range of proteins that may not be amenable to
traditional approaches, large protein complexes, or mutants/variants of the targets that might escape single
binding agents.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Stephanopoulos其他文献
Nicholas Stephanopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Stephanopoulos', 18)}}的其他基金
Immobilizing Gradients of Neurotrophic Factors On An Aligned Biomaterial Scaffold
将神经营养因子的梯度固定在对齐的生物材料支架上
- 批准号:
8398526 - 财政年份:2012
- 资助金额:
$ 29.6万 - 项目类别:
Immobilizing Gradients of Neurotrophic Factors On An Aligned Biomaterial Scaffold
将神经营养因子的梯度固定在对齐的生物材料支架上
- 批准号:
8488317 - 财政年份:2012
- 资助金额:
$ 29.6万 - 项目类别:
Immobilizing Gradients of Neurotrophic Factors On An Aligned Biomaterial Scaffold
将神经营养因子的梯度固定在对齐的生物材料支架上
- 批准号:
8658863 - 财政年份:2012
- 资助金额:
$ 29.6万 - 项目类别:
相似国自然基金
新型蝙蝠MERS簇冠状病毒HKU5的ACE2细胞受体识别及其分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
铁皮石斛通过肠道 ACE2 修复 Trp/GPR142 介
导“肠-胰岛 ”轴血糖调控功能的降糖机制研
究
- 批准号:Y24H280055
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
- 批准号:82305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Spike变异对新冠病毒抗原性及ACE2种属嗜性的影响研究
- 批准号:82272305
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
新型コロナウイルス感染阻害能を有する抗ACE2抗体の阻害機構に関する構造基盤解明
阐明具有抑制新型冠状病毒感染能力的抗ACE2抗体抑制机制的结构基础
- 批准号:
24K09338 - 财政年份:2024
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ACE2のユビキチン化を介したコロナウイルス感染機構の解明と創薬への挑戦
通过ACE2泛素化阐明冠状病毒感染机制和药物发现的挑战
- 批准号:
22KJ2499 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ACE2阻害薬およびERK経路阻害薬による慢性腎炎進展抑制効果の検証
ACE2抑制剂和ERK通路抑制剂抑制慢性肾炎进展的效果验证
- 批准号:
23K14982 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
一次線毛とコロナウイルス感染におけるACE2の役割の解明
阐明 ACE2 在原发菌毛和冠状病毒感染中的作用
- 批准号:
22KF0004 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The regulatory roles of ACE2 and its interaction with Nrf2 in arsenic-induced endothelial dysfunction in experimental and epidemiological studies
实验和流行病学研究中 ACE2 的调节作用及其与 Nrf2 的相互作用在砷诱导的内皮功能障碍中的作用
- 批准号:
23K16310 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of ACE2 in the mechanism of intestinal regeneration
ACE2在肠道再生机制中的作用
- 批准号:
23K15078 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research and development of a novel pediatric anti-obesity medicine via ACE2 activation in DIZE
通过 DIZE 中 ACE2 激活研发新型儿科抗肥胖药物
- 批准号:
23K15417 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Lung delivery of novel ACE2 variants for COVID-19
针对 COVID-19 的新型 ACE2 变体的肺部输送
- 批准号:
10483042 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
ACE2 on gut barrier dysfunction and BRB disruption
ACE2 对肠道屏障功能障碍和 BRB 破坏的影响
- 批准号:
10535485 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别: