CAREER: Signal Processing for Practical Data Communication over the Doubly-Selective Wireless Channel

职业:双选无线信道上实际数据通信的信号处理

基本信息

项目摘要

ABSTRACT0237037Philip SchmiterOhio State UniversityThe rapidly evolving global information infrastructure includes broadband wireless communication as a key component. Communication technology of the future will need to operate at the data rates, at high carrier frequencies, in high mobility situations, and under high levels of co-channel interference, all while maintaining reliable data transmission using small and inexpensive components. The fundamental challenge for future wireless technology stems from the harsh characteristics of the wireless propagation channel.In specific, reflections from objects in the physical environment induce rapidly changing echo patterns which make it difficult for the receiver to recover the transmitted information without error. Especially challenging are doubly-selective channels, i.e., channels which echo or blur the transmitted information significantly in both the time and frequency domains. Since, these characteristics arise when high-rate information streams are propagated at high frequencies in highly mobile environments, the success of future wireless applications hinges on our ability to communicate information reliably over the doubly-selective channel.This research investigates practical signaling, detection, and estimation strategies for spectrally-efficient broadband data communication over doubly-selective wireless channels. Orthogonal frequency division multiplexing, known for its advantages in time-non-selective fading, is used as a starting point in the study of practical data detection and channel estimation methods. Extending these ideas, the investigators focus on non-orthogonal multicarrier signaling schemes which are specifically designed to optimize detection performance under receiver complexity constraints.
快速发展的全球信息基础设施包括宽带无线通信作为一个关键组成部分。未来的通信技术将需要在数据速率、高载波频率、高移动性情况和高水平的同信道干扰下运行,同时使用小型和廉价的组件保持可靠的数据传输。未来无线技术的根本挑战来自无线传播信道的恶劣特性。具体来说,来自物理环境中物体的反射会引起快速变化的回波模式,这使得接收器难以准确地恢复传输的信息。尤其具有挑战性的是双选择性信道,即在时域和频域都明显回波或模糊传输信息的信道。由于在高移动环境中以高频率传播高速率信息流时会出现这些特性,因此未来无线应用的成功取决于我们在双选择信道上可靠地通信信息的能力。本研究探讨了在双选择无线信道上频谱高效宽带数据通信的实际信令、检测和估计策略。正交频分复用以其在时间非选择性衰落方面的优势而闻名,并被用作实际数据检测和信道估计方法研究的起点。扩展这些思想,研究人员专注于非正交多载波信令方案,该方案专门设计用于优化接收器复杂性约束下的检测性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Schniter其他文献

6 Equalization of Time-Varying Channels
6 时变通道的均衡
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Schniter;S. Hwang;Sibasish Das;A. P. Kannu
  • 通讯作者:
    A. P. Kannu
Iterative Frequency-Domain Channel Estimation and Equalization for Single-Carrier Transmissions without Cyclic-Pre x
无循环预置的单载波传输的迭代频域信道估计和均衡
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong Liu;Philip Schniter
  • 通讯作者:
    Philip Schniter
Beamforming and Combining Strategies for MIMO-OFDM over Doubly Selective Channels
双选信道 MIMO-OFDM 的波束成形和组合策略
On the design of non-(bi)orthogonal pulse-shaped FDM for doubly-dispersive channels
双色散通道非(双)正交脉冲整形FDM设计
Exploiting structured sparsity in Bayesian experimental design
在贝叶斯实验设计中利用结构化稀疏性

Philip Schniter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Schniter', 18)}}的其他基金

Collaborative Research: CIF: Medium: Learning and Inference in High-Dimensional Models: Rigorous Analysis and Applications
合作研究:CIF:中:高维模型中的学习和推理:严谨的分析和应用
  • 批准号:
    1955587
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Approximate Message Passing Algorithms and Networks
近似消息传递算法和网络
  • 批准号:
    1716388
  • 财政年份:
    2017
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Next Generation Communications with Low-Resolution ADCs: Fundamentals and Practical Design
CIF:小型:协作研究:采用低分辨率 ADC 的下一代通信:基础知识和实用设计
  • 批准号:
    1527162
  • 财政年份:
    2015
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Message-Passing Strategies for High-Dimensional Inference
高维推理的消息传递策略
  • 批准号:
    1218754
  • 财政年份:
    2012
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
CIF: Small: Soft Inference under Structured Sparsity
CIF:小:结构化稀疏下的软推理
  • 批准号:
    1018368
  • 财政年份:
    2010
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
  • 批准号:
    2340405
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Bayesian Graph Signal Processing for Machine Perception
职业:用于机器感知的贝叶斯图信号处理
  • 批准号:
    2146261
  • 财政年份:
    2022
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Commutated-LC Circuits for Next-Generation RF-Domain Signal Processing
职业:用于下一代射频域信号处理的换向 LC 电路
  • 批准号:
    2046104
  • 财政年份:
    2021
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Machine learning and signal processing methods for analyzing single-cell sequencing data
职业:用于分析单细胞测序数据的机器学习和信号处理方法
  • 批准号:
    1942303
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    2015708
  • 财政年份:
    2019
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
CAREER: Signal processing in the Erk pathway: dynamics, decisions, and development
职业:Erk 通路中的信号处理:动态、决策和发展
  • 批准号:
    1750663
  • 财政年份:
    2018
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
  • 批准号:
    1818571
  • 财政年份:
    2018
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
CAREER: Plenoptic Signal Processing --- A Framework for Sampling, Detection, and Estimation using Plenoptic Functions
职业:全光信号处理——使用全光功能进行采样、检测和估计的框架
  • 批准号:
    1652569
  • 财政年份:
    2017
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
  • 批准号:
    1650449
  • 财政年份:
    2017
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了