CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
基本信息
- 批准号:2015708
- 负责人:
- 金额:$ 20.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: Atomically-thin semiconducting crystals can be derived from layered materials bonded by weak van der Waals interactions. They offer a wide spectrum of attractive properties and enable new two-dimensional nanostructures and building blocks for functional devices, promising a new route to future electronics and optoelectronics beyond the scaling of mainstream devices that are top-down nanofabricated from conventional materials. Yet, many intriguing effects in two-dimensional crystals, and their translations into device platforms for realizing important signal processing functions, remain unexplored. Further innovations require systematic studies of coupling and tuning mechanical, electronic, and optoelectronic properties in two-dimensional semiconductors. The objective of this project is to investigate these fundamental phenomena across different signal domains (mechanical, electrical and optical) in two-dimensional crystals and heterostructures, and to harness such effects to innovate signal processing functions (such as filtering, mixing, timing, function generation and amplification), with new features and benefits. This research advances the current frontiers of two-dimensional materials and devices. The results will elucidate the essential device physics and potential of transforming the attractive two-dimensional crystals into applicable devices. This project will advance scientific knowledge in areas including two-dimensional nanoelectromechanical systems, electronics, optoelectronics, multiphysics analysis and modeling, and two-dimensional device fabrication. This project will generate extraordinary educational materials and inspirations for students at all ages, from K-12 to graduate students. The outreach programs will broaden participations from underrepresented and disadvantaged groups. The PI has initiated collaborations with Cleveland Institute of Music and Children's Museum, developing innovative programs at the crossroad of science and arts, featuring the fascinating nature of nanostructures enabled by two-dimensional crystals and heterostructures. Technical Description: The objective of this project is to directly probe and understand the fundamental electromechanical and optoelectromechanical behavior in two-dimensional semiconducting crystals and heterostructures with designed mechanical degrees of freedom. Furthermore, such understandings of the coupling effects will be harnessed to derive and validate signal processing functions, and directly tested in rationally designed nanostructures. An experimental approach will be emphasized, and will be reinforced by analytical modeling and computer simulations. The research activities include designs and experiments on suspended-channel field-effect transistors, radio-frequency resonant-channel devices with dynamically tunable electromechanical interactions, investigations of tuning, nonlinear, parametric behavior and optoelectronic functions, all in two-dimensional crystals and heterostructures. This project directly aims at investigating new device fundamentals and developing novel technological precursors. The experimental measurements, device prototypes, theoretical analysis and simulations will provide an in-depth, integrated understanding of how to dynamically tune some of the key properties of two-dimensional crystals, and how to efficiently exploit the electromechanical and optoelectromechanical effects to innovate new two-dimensional devices for ultralow-power, ultrasensitive signal transduction. The research activities and the approaches will establish two-dimensional nanoelectromechanical systems as a new branch in parallel to two-dimensional electronics and optoelectronics, paving the way toward future research in a new paradigm of information technology with two-dimensional devices and systems.
非技术描述:原子上薄的半导体晶体可以从弱范德华相互作用键合的分层材料中得出。 它们提供了各种吸引人的特性,并为功能设备提供了新的二维纳米结构和构建块,并有望为未来电子设备和光电的新途径,而不是从传统材料中自上而下的主流设备的扩展。 然而,在二维晶体中的许多有趣效果,以及它们转换为实现重要信号处理功能的设备平台,仍未得到探索。 进一步的创新需要对二维半导体中的耦合和调谐机械,电子和光电特性进行系统的研究。 该项目的目的是研究二维晶体和异质结构中不同信号结构域(机械,电气和光学)跨不同信号结构域(机械,电气和光学)的这些基本现象,并利用这种效应来创新信号处理功能(例如过滤,混合,时机,时间,功能,功能产生和扩增),并具有新功能和好处。 这项研究推进了当前二维材料和设备的前沿。 结果将阐明必需的设备物理,并将有吸引力的二维晶体转换为适用设备的潜力。 该项目将推进包括二维纳米机电系统,电子产品,光电子,多物理分析和建模以及二维设备制造的领域的科学知识。 该项目将为从K-12到研究生的所有年龄段的学生都会为学生提供非凡的教育材料和灵感。 外展计划将扩大代表性不足和处于弱势群体的参与。 PI与克利夫兰音乐与儿童博物馆研究所(Cleveland Institute of Music and Children's Museum)合作,在科学和艺术十字架上开发了创新的计划,其特征是由二维晶体和异质结构实现的纳米结构的迷人性质。 技术描述:该项目的目的是直接探测和了解具有设计机械自由度的二维半导体晶体和异质结构中的基本机电和光电机械行为。 此外,对耦合效应的这种理解将被利用以得出和验证信号处理函数,并直接在理性设计的纳米结构中进行了测试。 将强调一种实验方法,并通过分析建模和计算机模拟来加强实验方法。 研究活动包括对悬浮通道磁场晶体管的设计和实验,带有动态可调机电相互作用的射频谐振通道设备,对调谐,非线性,参数行为和光电函数的调查,所有均具有二维晶体和异性晶体结构。 该项目直接旨在研究新的设备基本面并开发新的技术前代。 实验测量,设备原型,理论分析和模拟将对如何动态调节二维晶体的某些关键特性以及如何有效利用机电和光链机械效应,以使新的二维设备对超级敏感的新型信号进行创新。 研究活动和方法将建立二维纳米机电系统,作为与二维电子和光电子学并行的新分支机构,为新的信息技术范式铺平了未来研究的方式,并具有二维设备和系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Feng其他文献
Philip Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Feng', 18)}}的其他基金
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221881 - 财政年份:2022
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
- 批准号:
2142552 - 财政年份:2022
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)
合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)
- 批准号:
2103091 - 财政年份:2021
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
- 批准号:
2015670 - 财政年份:2019
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
- 批准号:
1810154 - 财政年份:2018
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
- 批准号:
1454570 - 财政年份:2015
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Self-Sustaining Tunable Multi-Frequency Oscillators Using Atomically-Thin Semiconducting Multimode Resonators
使用原子薄半导体多模谐振器的自持可调谐多频振荡器
- 批准号:
1509721 - 财政年份:2015
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
- 批准号:
1408494 - 财政年份:2014
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
相似国自然基金
基于qBIC-惠更斯共振的动量域光场动态可调谐超表面机理与器件研究
- 批准号:62305372
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
单片集成可调谐高速耦合微腔激光器的动态调控机制研究
- 批准号:62374160
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
液晶可调谐共振式电介质超构表面的动态相位调控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
液晶可调谐共振式电介质超构表面的动态相位调控研究
- 批准号:62205252
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于液体材料的可重构天线及其馈电结构的研究
- 批准号:61901143
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
- 批准号:
DP240102450 - 财政年份:2024
- 资助金额:
$ 20.35万 - 项目类别:
Discovery Projects
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 20.35万 - 项目类别:
Fellowship
Dynamically Adaptive Prosthetic Limbs Enabled by Autonomous Soft Robotic Interfaces
由自主软机器人接口实现的动态自适应假肢
- 批准号:
10095028 - 财政年份:2024
- 资助金额:
$ 20.35万 - 项目类别:
Collaborative R&D
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 20.35万 - 项目类别:
Standard Grant