CAREER: Stochastic Models for Video-Equipped Intelligent Environments

职业:配备视频的智能环境的随机模型

基本信息

  • 批准号:
    0237913
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-04-15 至 2005-03-31
  • 项目状态:
    已结题

项目摘要

A surprisingly large number of safety tasks can be viewed as the detection of unusual events. This research will develop video analysis systems that can distinguish ``unusual'' from ``normal'' activities without specifying the unusual events ahead of time. This stands in contrast to most current systems which are designed to recognize special, pre-determined events. Three major thrusts of work will make the development of such video safety systems more realistic: (1)The PI will significantly increase the precision of parametric process models by including the event duration and the time of an event. (2)These complex models require more training data, yet only few data points will be available to estimate the time-dependent parameters. Therefore, this research will explore several different ways of estimating accurate models robustly from limited data. (3)Finally, this research will investigate how to use HMMs to detect deviations of the current time-series from the learned model. The theoretical work will be put to practice on a task that will increase the safety of independently living senior citizens. The system will learn a model of the daily habits of the person based on video data from multiple cameras in the apartment. Emergency situations like strokes and falls can then be detected as deviations from the regular behavior, and a care taker can be notified. In the later stages of the project, the new models will also be applied to other safety and traffic tasks.The education component of this award includes the development of extensive tutorials on stochastic modeling techniques which will be made available to the public online, as well as an interdisciplinary seminar on stochastic modeling at RPI.
大量的安全任务可以被视为异常事件的检测。这项研究将开发视频分析系统,可以区分“不寻常”和“正常”的活动,而无需提前说明不寻常的事件。这与大多数当前的系统相反,这些系统被设计为识别特殊的预定事件。三个主要的工作重点将使这种视频安全系统的开发更加现实:(1)PI将通过包括事件持续时间和事件的时间来显着提高参数过程模型的精度。(2)这些复杂的模型需要更多的训练数据,但只有很少的数据点可用于估计时间相关参数。因此,本研究将探索几种不同的方法来从有限的数据中稳健地估计精确的模型。(3)最后,本研究将研究如何使用HALTH来检测当前时间序列与学习模型的偏差。理论工作将付诸实践,以提高独立生活的老年公民的安全。 该系统将根据公寓中多个摄像头的视频数据学习人的日常习惯模型。然后,可以将像中风和福尔斯这样的紧急情况检测为与常规行为的偏差,并且可以通知护理人员。在项目的后期阶段,新模型还将应用于其他安全和交通任务。该奖项的教育部分包括开发广泛的随机建模技术教程,这些教程将在网上向公众提供,以及在RPI举办随机建模跨学科研讨会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vera Kettnaker其他文献

Vera Kettnaker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: A Unifying Stochastic Framework for Temporally Consistent Computer Vision Models
职业生涯:时间一致计算机视觉模型的统一随机框架
  • 批准号:
    2224591
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: A Unifying Stochastic Framework for Temporally Consistent Computer Vision Models
职业生涯:时间一致计算机视觉模型的统一随机框架
  • 批准号:
    2045963
  • 财政年份:
    2021
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Models of Cancer Evolution
职业:癌症进化的随机模型
  • 批准号:
    1349724
  • 财政年份:
    2014
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Models for Designing the Patient Centered Medical Home in Primary Care
职业:设计初级保健中以患者为中心的医疗之家的随机模型
  • 批准号:
    1254519
  • 财政年份:
    2013
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: Risk Management via Stochastic Programming: Models, Computation, and Applications
职业:通过随机规划进行风险管理:模型、计算和应用
  • 批准号:
    0952907
  • 财政年份:
    2010
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: New Algorithmic Approaches to Computationally Challenging Stochastic Supply Chain and Revenue Management Models
职业:具有计算挑战性的随机供应链和收入管理模型的新算法方法
  • 批准号:
    0846554
  • 财政年份:
    2009
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Dynamical Models in Microbiology
职业:微生物学中的随机动力学模型
  • 批准号:
    0449717
  • 财政年份:
    2005
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: Extensions of Stochastic Programming: Models, Algorithms, and Applications
职业:随机规划的扩展:模型、算法和应用
  • 批准号:
    0133943
  • 财政年份:
    2002
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: Regulation of Packet-Switched Networks: Stochastic Optimal Control Models and Computational Methods
职业:分组交换网络的调节:随机最优控制模型和计算方法
  • 批准号:
    9875688
  • 财政年份:
    1999
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了