CAREER: An Ensemble of Classifiers Based Approach for Incremental Learning
职业:基于分类器集成的增量学习方法
基本信息
- 批准号:0239090
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-03-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal outlines a set of research and educational endeavors as part of the PI's career development plan to establish a Pattern Recognition and Machine Learning Laboratory at Rowan University. The research will address the problem of incremental learning of new in-formation without losing previously acquired knowledge, using an ensemble of classifiers approach. It will also addresses related issues that can benefit from an ensemble approach, such as estimating classification confidence and learning in non-stationary environments.The research will be tightly integrated into a variety of traditional and nontraditional educational activities. Traditional activities include developing undergraduate and graduate courses, laboratory exercises and seminars, while nontraditional activities include forming integrated research and learning communities (IRLCs) to introduce research based education to undergraduate curriculum. These communities will consist of students of all classifications, freshman through graduate (vertical integration) with a conscious effort of integrating diverse gender, ethnic, and racial backgrounds (horizontal integration). Communities will be working on different aspects of the project, with individual members responsible of tasks that are commensurate with their intellectual and academic skills. These activities will develop research, analytical thinking, problem solving, team building and communication skills of the community members, while providing maximum multidisciplinary research exposure to both undergraduate and graduate students.
该提案概述了一系列研究和教育工作,作为PI职业发展计划的一部分,在罗文大学建立模式识别和机器学习实验室。该研究将解决新信息的增量学习问题,而不会丢失以前获得的知识,使用集成的分类方法。它还将解决可以从集成方法中受益的相关问题,例如估计分类置信度和在非平稳环境中的学习,该研究将紧密结合到各种传统和非传统的教育活动中。传统的活动包括开发本科和研究生课程,实验室练习和研讨会,而非传统的活动包括形成综合研究和学习社区(IRLCs),以引入基于研究的教育本科课程。这些社区将包括所有类别的学生,大一到研究生(垂直整合),有意识地努力整合不同的性别,民族和种族背景(横向整合)。社区将致力于项目的不同方面,个人成员负责与其智力和学术技能相称的任务。这些活动将发展研究,分析思维,解决问题,团队建设和社区成员的沟通技巧,同时提供最大的多学科研究接触本科生和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robi Polikar其他文献
Learning from streaming data with concept drift and imbalance: an overview
- DOI:
10.1007/s13748-011-0008-0 - 发表时间:
2012-01-13 - 期刊:
- 影响因子:2.400
- 作者:
T. Ryan Hoens;Robi Polikar;Nitesh V. Chawla - 通讯作者:
Nitesh V. Chawla
Robi Polikar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robi Polikar', 18)}}的其他基金
Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data
合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习
- 批准号:
1936782 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
AIS: Learning from Initially Labeled Nonstationary Streaming Data
AIS:从最初标记的非平稳流数据中学习
- 批准号:
1310496 - 财政年份:2013
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: AIS: Incremental Learning from Unbalanced Data in Nonstationary Environments
合作研究:AIS:非平稳环境中不平衡数据的增量学习
- 批准号:
0926159 - 财政年份:2009
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Experiments for Integrating BME Concepts into the ECE Curriculum
将 BME 概念融入 ECE 课程的实验
- 批准号:
0231350 - 财政年份:2003
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
相似海外基金
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An ensemble approach to studying the ocean's role in climate change
研究海洋在气候变化中的作用的整体方法
- 批准号:
DP240101274 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Projects
Study on ensemble forecast using a high-resolution ocean data assimilation system
高分辨率海洋资料同化系统集合预报研究
- 批准号:
23K13174 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Enhancing Ensemble Diversity in Neural Ensemble Search for Uncertainty Quantification
增强神经集成搜索中的集成多样性以实现不确定性量化
- 批准号:
2872703 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Studentship
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singing voice synthesis that can form ensemble with humans and computers
人机合奏的歌声合成
- 批准号:
23K18474 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The masking, unmasking, and re-masking of food memories: neuronal ensemble mechanisms
食物记忆的掩蔽、揭露和重新掩蔽:神经元集成机制
- 批准号:
BB/X000427/1 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Research Grant
Collaborative Research: Structural Frameworks for Output Control of Continuum Ensemble Systems
合作研究:连续系综系统输出控制的结构框架
- 批准号:
2303221 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant