Collaborative Research: AIS: Incremental Learning from Unbalanced Data in Nonstationary Environments
合作研究:AIS:非平稳环境中不平衡数据的增量学习
基本信息
- 批准号:0926159
- 负责人:
- 金额:$ 16.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)"The ultimate goal of computational intelligence has long been emulating brain-like-intelligence by discovering and learning patterns from data. However, in related research, the data have been assumed to be generated by an underlying fixed physical process. Recently, new algorithms have emerged that can accommodate new data, or data with unbalanced distributions. However, learning from a non-stationary environment, where the underlying process that generates the data changes over time, has received less attention, whereas the problem of learning in a non-stationary environment that incrementally provides unbalanced data has received hardly any attention. Since the brain can and routinely does learn in such settings, the need for a general framework for learning from ? and adapting to ? a nonstationary environment that introduces unbalanced data can be hardly overstated. Spam detection, epidemiological studies, or analysis of climate change, are just a few examples of such scenarios. Given such a scenario of unbalanced data, the goal of this project is to develop a general framework that would recognize if and when there has been a change, learn novel content, reinforce existing knowledge that is still relevant, and forget what may no longer be relevant. Our hypothesis is that learning from unbalanced and nonstationary data can be achieved by strategic use of i.) data regeneration through local extrapolation ? to help balance the unbalanced dataset ? combined with ii.) an incrementally generated ensemble of experts model that use dynamically assigned weights to emulate short and long term memory properties of the brain ? to help track the changing environments.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。然而,在相关的研究中,数据被假定为由一个潜在的固定物理过程产生。最近,出现了新的算法,可以适应新的数据,或具有不平衡分布的数据。 然而,从非平稳环境中学习,其中生成数据的底层过程随时间而变化,受到的关注较少,而在增量提供不平衡数据的非平稳环境中学习的问题几乎没有受到任何关注。 既然大脑可以并且经常在这样的环境中学习,那么需要一个通用的学习框架吗?和适应?引入不平衡数据的非平稳环境几乎不可能被夸大。垃圾邮件检测、流行病学研究或气候变化分析只是此类情况的几个例子。鉴于这种不平衡数据的情况,本项目的目标是开发一个通用框架,该框架将识别是否以及何时发生变化,学习新内容,加强仍然相关的现有知识,并忘记可能不再相关的内容。我们的假设是,从不平衡和非平稳数据中学习可以通过策略性地使用i来实现。通过局部外推法重新生成数据?来帮助平衡不平衡的数据集与二)。一个增量生成的专家模型,使用动态分配的权重来模拟大脑的短期和长期记忆特性?来帮助追踪不断变化的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robi Polikar其他文献
Learning from streaming data with concept drift and imbalance: an overview
- DOI:
10.1007/s13748-011-0008-0 - 发表时间:
2012-01-13 - 期刊:
- 影响因子:2.400
- 作者:
T. Ryan Hoens;Robi Polikar;Nitesh V. Chawla - 通讯作者:
Nitesh V. Chawla
Robi Polikar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robi Polikar', 18)}}的其他基金
Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data
合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习
- 批准号:
1936782 - 财政年份:2020
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
AIS: Learning from Initially Labeled Nonstationary Streaming Data
AIS:从最初标记的非平稳流数据中学习
- 批准号:
1310496 - 财政年份:2013
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Experiments for Integrating BME Concepts into the ECE Curriculum
将 BME 概念融入 ECE 课程的实验
- 批准号:
0231350 - 财政年份:2003
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CAREER: An Ensemble of Classifiers Based Approach for Incremental Learning
职业:基于分类器集成的增量学习方法
- 批准号:
0239090 - 财政年份:2003
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 16.49万 - 项目类别:
Continuing Grant