Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data

合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习

基本信息

  • 批准号:
    1936782
  • 负责人:
  • 金额:
    $ 24.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Microbiomes are communities of microscopic organisms that are found everywhere on earth and are important in help to digest food in the gut. In the intestines, they can produce vitamins (good) or toxins (bad), so we need to understand what organisms and genes are present in these microscopic communities. This project uses artificial intelligence (AI) to identify organisms and their genes that live in microbiomes. Existing works for this effort have been hampered due to very rapidly growing amount of data, which often need to be repeatedly re-analyzed as new data become available. Such a process is not only inefficient, but is increasingly unsustainable, even for our growing computational resources. This approach is unique because it uses less computing power. Instead of continuously reentering massive amounts of data, the proposed state-of-the-art system has the ability to recall and reuse prior information without requiring reentering or re-analyzing prior data,saving substantial computing time and ultimately money. The goal is to find AI methods that achieve the best cost savings while not sacrificing accuracy. Many unidentified organisms are also found in microbiome experiments and are discarded and never used to identify the same organisms in other experiments. An AI based approach will keep, remember, and reuse their information in case those new organisms show up in again later in other experiments and eventually help in their identification. If the organism is identified in the future, the method can automatically update old data and the knowledgebase effectively and efficiently.This project will develop a dynamic, scalable, and semi-supervised learning framework that continually updates a classification model, with large unlabeled, experimental data. In addition to creating richer models that can leverage both reference and experimental data, the primary innovation is that the model will identify unknown organisms and proteins and integrate them into reference database for future model updates. This framework will be validated on the hundreds of metagenomic studies (composed of potentially thousands of samples) annually submitted to the microbiome computing website MG-RAST. MG-RAST is used by scientists to upload their microbiomes to study and improve agriculture, diagnoses, medicine, making biofuels, and a variety of other applications on which microorganisms have a deep effect. This work will contribute to college student training on artificial intelligence and its application to the microbiome. Results will be shared broadly with other educators and researchers through summer workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微生物群落是地球上随处可见的微生物群落,对帮助消化肠道中的食物非常重要。在肠道中,它们可以产生维生素(好的)或毒素(坏的),所以我们需要了解这些微生物群落中存在哪些有机体和基因。该项目使用人工智能(AI)来识别生活在微生物群中的生物及其基因。这项工作的现有工作由于数据量的快速增长而受到阻碍,随着新数据的出现,这些数据量往往需要反复重新分析。这样的过程不仅效率低下,而且越来越不可持续,即使对于我们日益增长的计算资源来说也是如此。这种方法是独一无二的,因为它使用的计算能力更少。与不断重新输入大量数据不同,拟议的最先进系统具有召回和重复使用先前信息的能力,而不需要重新输入或重新分析先前的数据,从而节省大量计算时间,最终节省资金。我们的目标是找到在不牺牲准确性的情况下实现最佳成本节约的人工智能方法。在微生物组实验中也发现了许多未识别的生物,它们被丢弃,从未在其他实验中用于识别相同的生物。一种基于人工智能的方法将保留、记忆和重复使用他们的信息,以防这些新生物稍后在其他实验中再次出现,并最终帮助识别它们。如果生物体在未来被识别,该方法可以有效和高效地自动更新旧数据和知识库。该项目将开发一个动态、可扩展和半监督的学习框架,使用大量未标记的实验数据不断更新分类模型。除了创建可以利用参考和实验数据的更丰富的模型外,主要的创新是该模型将识别未知的生物和蛋白质,并将它们集成到参考数据库中,用于未来的模型更新。这一框架将在每年提交给微生物组计算网站MG-RAST的数百项元基因组研究(可能由数千个样本组成)上得到验证。MG-RAST被科学家用来上传他们的微生物群,用于研究和改进农业、诊断、医药、制造生物燃料以及微生物对其有深刻影响的各种其他应用。这项工作将有助于大学生在人工智能方面的培训及其在微生物组中的应用。结果将通过暑期工作坊与其他教育工作者和研究人员广泛分享。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-supervised and Incremental VSEARCH for Metagenomic Classification
用于宏基因组分类的半监督增量 VSEARCH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robi Polikar其他文献

Learning from streaming data with concept drift and imbalance: an overview
  • DOI:
    10.1007/s13748-011-0008-0
  • 发表时间:
    2012-01-13
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    T. Ryan Hoens;Robi Polikar;Nitesh V. Chawla
  • 通讯作者:
    Nitesh V. Chawla

Robi Polikar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robi Polikar', 18)}}的其他基金

AIS: Learning from Initially Labeled Nonstationary Streaming Data
AIS:从最初标记的非平稳流数据中学习
  • 批准号:
    1310496
  • 财政年份:
    2013
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
Collaborative Research: AIS: Incremental Learning from Unbalanced Data in Nonstationary Environments
合作研究:AIS:非平稳环境中不平衡数据的增量学习
  • 批准号:
    0926159
  • 财政年份:
    2009
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
Experiments for Integrating BME Concepts into the ECE Curriculum
将 BME 概念融入 ECE 课程的实验
  • 批准号:
    0231350
  • 财政年份:
    2003
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
CAREER: An Ensemble of Classifiers Based Approach for Incremental Learning
职业:基于分类器集成的增量学习方法
  • 批准号:
    0239090
  • 财政年份:
    2003
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
  • 批准号:
    2324717
  • 财政年份:
    2023
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318830
  • 财政年份:
    2023
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318831
  • 财政年份:
    2023
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
  • 批准号:
    2324716
  • 财政年份:
    2023
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR Multidisciplinary: mSAIL (Michigan Small Animal Integrated Logger): a milligram-scale, multi-modal sensor and analytics monitoring platform
合作研究:IIBR 多学科:mSAIL(密歇根小动物综合记录仪):毫克级、多模式传感器和分析监测平台
  • 批准号:
    2043017
  • 财政年份:
    2021
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Multidisciplinary: mSAIL (Michigan Small Animal Integrated Logger): a milligram-scale, multi-modal sensor and analytics monitoring platform
合作研究:IIBR 多学科:mSAIL(密歇根小动物综合记录仪):毫克级、多模式传感器和分析监测平台
  • 批准号:
    2045017
  • 财政年份:
    2021
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Instrumentation: The Nanosizer - A new tool for the preparation of arbitrary bioactive surfaces
合作研究:IIBR 仪器:Nanosizer - 用于制备任意生物活性表面的新工具
  • 批准号:
    2032176
  • 财政年份:
    2020
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
  • 批准号:
    2104147
  • 财政年份:
    2020
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
BBSRC-NSF/BIO: IIBR Informatics: Collaborative Research: Inference of isoform-level regulatory infrastructures with studies in steroid-producing cells
BBSRC-NSF/BIO:IIBR 信息学:合作研究:通过对类固醇生成细胞的研究推断异构体水平的监管基础设施
  • 批准号:
    2019797
  • 财政年份:
    2020
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了