Computational Studies in Electrochemical Materials Science by Statistical-Mechanical and Ab-Initio Methods

电化学材料科学中统计力学和从头计算方法的计算研究

基本信息

  • 批准号:
    0240078
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-03-15 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

0240078RikvoldThis grant supports a theoretical project investigating surface electrochemistry. Surface electrochemistry contributes to the welfare of society in many ways, including metal production, electroplating, corrosion protection, energy storage, and heterogeneous catalysis for the chemical and pharmaceutical industries and environmental protection. Despite these diverse and economically important applications, it is only in the last two decades that experimental methods have become available that permit observation and manipulation of electrode/electrolyte interfaces on an atomic scale without removing the electrode to an ultra-high vacuum environment. These new, nanoscopic in situ methods include scanning probe microscopies, such as scanning tunneling microscopy and atomic force microscopy, and X-ray diffraction using high-brilliance synchrotron sources. In combination with the traditional, macroscopic methods of electrochemistry, such as cyclic voltammetry and chronocoulometry, these new techniques have ushered in a new era of atomic-scale electrochemical surface science. As a consequence, electrochemical methods to manufacture high-tech materials and devices that derive their properties from structure on the nanometer scale are being developed and have the potential to become cost-effective alternatives to current high-vacuum techniques. These impressive experimental developments are paralleled by spectacular progress in computer hardware and software. Calculations that required supercomputers a decade ago are now performed on personal computers, while today's fastest computers and algorithms can handle billions of atoms.This research will apply results and techniques from recent NSF-supported computational and theoretical studies of dynamical phenomena in electrochemical materials science to study the dynamics of anions that are electrochemically adsorbed on single-crystal electrodes. These results and techniques include theoretical models for specific electrochemical systems, highly efficient dynamic multiscale simulation algorithms, and ab initio quantum mechanical methods. The methods will be used and developed further in investigations of halides electrochemically adsorbed on silver and gold, and the dynamics of phase transformations of gold surfaces under rapidly pulsed potential. The results will be compared with experiments in collaboration with experimental groups. In addition to studies of specific systems, the research will include work of more general scope on effects of diffusion of adsorbed atoms on the adsorbate structure, on dynamics of adsorbate systems under conditions of rapidly varying electrode potentials, and on methods to include the effects of electric fields and to explicitly include water molecules in ab initio calculations.Work will also continue to develop simulation algorithms that faithfully represent the effects of adsorption, desorption, and lateral diffusion that occur on atomic time scales of less that 10-10 seconds, while enabling simulation of processes on a scale of seconds or longer. This problem of bridging time scales will be addressed in a hierarchical manner, using studies of small continuum systems to determine parameters for input in simulations that can reach macroscopic times with the application of modern algorithms.This research is expected to result in improved understanding of nonequilibrium processes at electrode/electrolyte interfaces, and thereby contribute to the development of new, electrochemistry-based processes to manufacture nanoparticles, ultrathin films, and other nanostructured materials. The research is ideal for involving students at all levels in the discovery process.%%%This grant supports a theoretical project investigating surface electrochemistry. Surface electrochemistry contributes to the welfare of society in many ways, including metal production, electroplating, corrosion protection, energy storage, and heterogeneous catalysis for the chemical and pharmaceutical industries and environmental protection. Despite these diverse and economically important applications, it is only in the last two decades that experimental methods have become available that permit observation and manipulation of electrode/electrolyte interfaces on an atomic scale without removing the electrode to an ultra-high vacuum environment. These new, nanoscopic in situ methods include scanning probe microscopies, such as scanning tunneling microscopy and atomic force microscopy, and X-ray diffraction using high-brilliance synchrotron sources. In combination with the traditional, macroscopic methods of electrochemistry, such as cyclic voltammetry and chronocoulometry, these new techniques have ushered in a new era of atomic-scale electrochemical surface science. As a consequence, electrochemical methods to manufacture high-tech materials and devices that derive their properties from structure on the nanometer scale are being developed and have the potential to become cost-effective alternatives to current high-vacuum techniques. These impressive experimental developments are paralleled by spectacular progress in computer hardware and software. Calculations that required supercomputers a decade ago are now performed on personal computers, while today's fastest computers and algorithms can handle billions of atoms.This research will apply results and techniques from recent NSF-supported computational and theoretical studies of dynamical phenomena in electrochemical materials science to study the dynamics of anions that are electrochemically adsorbed on single-crystal electrodes. These results and techniques include theoretical models for specific electrochemical systems, highly efficient dynamic multiscale simulation algorithms, and ab initio quantum mechanical methods. The methods will be used and developed further in investigations of halides electrochemically adsorbed on silver and gold, and the dynamics of phase transformations of gold surfaces under rapidly pulsed potential. The results will be compared with experiments in collaboration with experimental groups. In addition to studies of specific systems, the research will include work of more general scope on effects of diffusion of adsorbed atoms on the adsorbate structure, on dynamics of adsorbate systems under conditions of rapidly varying electrode potentials, and on methods to include the effects of electric fields and to explicitly include water molecules in ab initio calculations.Work will also continue to develop simulation algorithms that faithfully represent the effects of adsorption, desorption, and lateral diffusion that occur on atomic time scales of less that 10-10 seconds, while enabling simulation of processes on a scale of seconds or longer. This problem of bridging time scales will be addressed in a hierarchical manner, using studies of small continuum systems to determine parameters for input in simulations that can reach macroscopic times with the application of modern algorithms.This research is expected to result in improved understanding of nonequilibrium processes at electrode/electrolyte interfaces, and thereby contribute to the development of new, electrochemistry-based processes to manufacture nanoparticles, ultrathin films, and other nanostructured materials. The research is ideal for involving students at all levels in the discovery process.***
[240078]这项资助支持一个研究表面电化学的理论项目。表面电化学在许多方面对社会福利做出了贡献,包括金属生产、电镀、防腐、能源储存、化学和制药工业的多相催化以及环境保护。尽管有这些多样化和经济上重要的应用,但只有在过去的二十年中,实验方法才允许在原子尺度上观察和操纵电极/电解质界面,而无需将电极移到超高真空环境中。这些新的纳米级原位方法包括扫描探针显微镜,如扫描隧道显微镜和原子力显微镜,以及使用高亮度同步加速器源的x射线衍射。这些新技术与传统的宏观电化学方法(如循环伏安法和计时库容法)相结合,开创了原子尺度电化学表面科学的新时代。因此,制造高科技材料和器件的电化学方法正在得到开发,这些材料和器件的性能来自纳米尺度的结构,并且有可能成为目前高真空技术的成本效益替代品。这些令人印象深刻的实验发展与计算机硬件和软件的惊人进步并行。十年前需要超级计算机才能完成的计算现在可以在个人计算机上完成,而今天最快的计算机和算法可以处理数十亿个原子。本研究将应用美国国家科学基金会最近支持的电化学材料科学动态现象的计算和理论研究的结果和技术来研究电化学吸附在单晶电极上的阴离子的动力学。这些结果和技术包括特定电化学系统的理论模型,高效的动态多尺度模拟算法和从头算量子力学方法。这些方法将进一步应用于研究电化学吸附在银和金上的卤化物,以及在快速脉冲电位下金表面的相变动力学。结果将与与实验组合作进行的实验进行比较。除了对特定系统的研究外,研究还将包括更广泛的工作,如吸附原子的扩散对吸附质结构的影响,在电极电位快速变化的条件下吸附质系统的动力学,以及在从头计算中包括电场影响和明确包括水分子的方法。研究人员还将继续开发模拟算法,以忠实地表示在小于10-10秒的原子时间尺度上发生的吸附、解吸和横向扩散的影响,同时能够在秒或更长时间尺度上模拟过程。桥接时间尺度的问题将以分层方式解决,使用小型连续体系统的研究来确定模拟中的输入参数,这些参数可以通过现代算法的应用达到宏观时间。这项研究有望提高对电极/电解质界面非平衡过程的理解,从而有助于开发新的、基于电化学的工艺来制造纳米颗粒、超薄膜和其他纳米结构材料。这项研究是让各个层次的学生参与发现过程的理想选择。这笔经费支持一个研究表面电化学的理论项目。表面电化学在许多方面对社会福利做出了贡献,包括金属生产、电镀、防腐、能源储存、化学和制药工业的多相催化以及环境保护。尽管有这些多样化和经济上重要的应用,但只有在过去的二十年中,实验方法才允许在原子尺度上观察和操纵电极/电解质界面,而无需将电极移到超高真空环境中。这些新的纳米级原位方法包括扫描探针显微镜,如扫描隧道显微镜和原子力显微镜,以及使用高亮度同步加速器源的x射线衍射。这些新技术与传统的宏观电化学方法(如循环伏安法和计时库容法)相结合,开创了原子尺度电化学表面科学的新时代。因此,制造高科技材料和器件的电化学方法正在得到开发,这些材料和器件的性能来自纳米尺度的结构,并且有可能成为目前高真空技术的成本效益替代品。这些令人印象深刻的实验发展与计算机硬件和软件的惊人进步并行。十年前需要超级计算机才能完成的计算现在可以在个人计算机上完成,而今天最快的计算机和算法可以处理数十亿个原子。本研究将应用美国国家科学基金会最近支持的电化学材料科学动态现象的计算和理论研究的结果和技术来研究电化学吸附在单晶电极上的阴离子的动力学。这些结果和技术包括特定电化学系统的理论模型,高效的动态多尺度模拟算法和从头算量子力学方法。这些方法将进一步应用于研究电化学吸附在银和金上的卤化物,以及在快速脉冲电位下金表面的相变动力学。结果将与与实验组合作进行的实验进行比较。除了对特定系统的研究外,研究还将包括更广泛的工作,如吸附原子的扩散对吸附质结构的影响,在电极电位快速变化的条件下吸附质系统的动力学,以及在从头计算中包括电场影响和明确包括水分子的方法。研究人员还将继续开发模拟算法,以忠实地表示在小于10-10秒的原子时间尺度上发生的吸附、解吸和横向扩散的影响,同时能够在秒或更长时间尺度上模拟过程。桥接时间尺度的问题将以分层方式解决,使用小型连续体系统的研究来确定模拟中的输入参数,这些参数可以通过现代算法的应用达到宏观时间。这项研究有望提高对电极/电解质界面非平衡过程的理解,从而有助于开发新的、基于电化学的工艺来制造纳米颗粒、超薄膜和其他纳米结构材料。这项研究非常适合让各个层次的学生参与发现过程

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Per Arne Rikvold其他文献

Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising ferromagnet at low temperatures.
低温下方晶格伊辛铁磁体亚稳态寿命中不同前因子的标度分析。
生態進化モデルの多様性の揺らぎと種の寿命分布
生态进化模型中多样性和物种寿命分布的波动
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    村瀬洋介;島田尚;伊藤伸泰;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
Slow forcing in the projective dynamics method
射影动力学方法中的慢力
  • DOI:
    10.1016/s0010-4655(99)00347-1
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    M. A. Novotny;M. Kolesik;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
量子モンテカルロ法による新しい量子相・量子臨界現象の探求
利用量子蒙特卡罗方法探索新的量子相和量子临界现象
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold;藤堂眞治
  • 通讯作者:
    藤堂眞治
Critical temperature and correlation length of an elastic interaction model for spin-crossover materials
自旋交叉材料弹性相互作用模型的临界温度和相关长度
  • DOI:
    10.1103/physrevb.85.054408
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold

Per Arne Rikvold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Per Arne Rikvold', 18)}}的其他基金

Computational studies of nonequilibrium processes in electrochemical materials science and catalysis
电化学材料科学和催化中非平衡过程的计算研究
  • 批准号:
    1104829
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computational Studies of Nonequilibrium processes in Electrochemical Materials Science
电化学材料科学中非平衡过程的计算研究
  • 批准号:
    0802288
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computational Studies of Statistical-Mechanical Models in Electrochemical Materials Science
电化学材料科学中统计力学模型的计算研究
  • 批准号:
    9981815
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computational Studies of Dynamical Phenomena in Nanoscale Ferromagnets
纳米级铁磁体动力学现象的计算研究
  • 批准号:
    9871455
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9634873
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-CGP Science Fellowship Program: Theoretical and Numerical Investigations of Relaxation in Metastable Systems
NSF-CGP 科学奖学金计划:亚稳态系统弛豫的理论和数值研究
  • 批准号:
    9512679
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9315969
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9013107
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Diagnostic Studies of Li-Ion Batteries by Electrochemical Impedance Spectroscopy
电化学阻抗谱对锂离子电池的诊断研究
  • 批准号:
    574268-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Electrochemical Ni-Catalyzed Reductive Biaryl Coupling: Mechanistic Studies to Enable Chemical Synthesis
合作研究:电化学镍催化还原联芳基偶联:实现化学合成的机理研究
  • 批准号:
    2154698
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Electrochemical Ni-Catalyzed Reductive Biaryl Coupling: Mechanistic Studies to Enable Chemical Synthesis
合作研究:电化学镍催化还原联芳基偶联:实现化学合成的机理研究
  • 批准号:
    2154700
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
In-Operando Studies of Electrochemical Materials and Processes
电化学材料和过程的现场研究
  • 批准号:
    RGPIN-2018-03725
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Electrochemical Ni-Catalyzed Reductive Biaryl Coupling: Mechanistic Studies to Enable Chemical Synthesis
合作研究:电化学镍催化还原联芳基偶联:实现化学合成的机理研究
  • 批准号:
    2154699
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Electrochemical and photoelectrochemical studies of functional nanomaterials and nanocomposites
功能纳米材料和纳米复合材料的电化学和光电化学研究
  • 批准号:
    RGPIN-2022-04238
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Electrochemical and photocatalytic studies of functional nanomaterials
功能纳米材料的电化学和光催化研究
  • 批准号:
    RGPIN-2015-06248
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
In-Operando Studies of Electrochemical Materials and Processes
电化学材料和过程的现场研究
  • 批准号:
    RGPIN-2018-03725
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Raman Spectroscopic System for In-Operando Electrochemical Studies
用于手术中电化学研究的拉曼光谱系统
  • 批准号:
    LE210100109
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Electrochemical and photocatalytic studies of functional nanomaterials
功能纳米材料的电化学和光催化研究
  • 批准号:
    RGPIN-2015-06248
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了