Computational Studies of Nonequilibrium processes in Electrochemical Materials Science

电化学材料科学中非平衡过程的计算研究

基本信息

  • 批准号:
    0802288
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This award supports research and education in computational and theoretical studies of nonequilibrium phenomena in electrochemical materials science. These studies are concerned with modeling of specific experimental systems, with investigation of fundamental nonequilibrium phenomena of importance to such systems, and with further development of computational and theoretical methods.The particular experimental phenomena, which will be investigated in collaboration with experimental groups, are island growth and dissolution in electrochemical pulsed-potential studies of single-crystal gold surfaces, and verification of a new method to study the dynamics of electrode surfaces that was suggested by the PI's computer simulations. Particular nonequilibrium phenomena that are investigated include the influence of lateral diffusion during electrochemical metal deposition and in heterogeneous catalytic reactions, and hysteresis in systems that are driven far from equilibrium by an oscillating force.The main method that will be used in the proposed research is large-scale computer simulation of model systems. Both continuous and discrete models will be used, and the computational methods will include kinetic Monte Carlo (KMC) simulations and numerical solution of stochastic differential equations, both with model parameters obtained from quantum-mechanical density-functional-theory calculations. The simulation data will be analyzed using several theoretical methods, including finite-size scaling theory, theory of stochastic processes, and statistics.The research has broader impact beyond the particular scientific investigations undertaken and contributes broadly to understanding issues of nonequilibrium processes and is relevant to technological development and has educational benefits. Since all time-dependent phenomena in nature, as well as in technology, are out of equilibrium by definition, nonequilibrium statistical mechanics is an essential research area. This research adds to our fundamental understanding of nonequilibrium processes. More specifically, this research improves understanding of nonequilibrium processes at electrode-electrolyte interfaces, and thereby contributes to the future development of new, electrochemistry-based manufacturing processes for advanced nanomaterials. Such fundamental knowledge and simulation algorithms developed through the research are applicable in many scientific and technological fields, including materials science, chemistry, biology, and even to the design and analysis of communications networks and power grids. This computationally intensive research is ideal for involving apprentices at all levels in the discovery process. It will contribute to education at all levels while including women and minorities by involving undergraduate and graduate students and postdoctoral fellows, who will mentor K-12 students. The results of the research will be communicated through articles in a wide spectrum of professional journals, through talks at scientific meetings, and through presentations for the general public, as well as through the World Wide Web.NONTECHNICAL SUMMARY:This award supports theoretical and computational research, and education on the growth of materials and structures of atoms on the scale of nanometers, about one ten-millionth of an inch, by electrochemical methods. During the last two decades experimental techniques have become available that enable electrochemical methods to manufacture high-tech materials that derive their functionality from structure on the nanometer scale. These methods are rapidly becoming cost-effective alternatives to traditional methods. These impressive experimental developments are matched by spectacular progress in computer technology and computational methods. The PI will use computer simulation methods to study how nanoscale structures grow on the surface of electrode materials immersed in a chemical solution with an electric current flowing through the electrodes. The study of growth phenomena like these advances the understanding of phenomena that are intrinsically out of equilibrium, an area of intense interest in modern statistical physics. Since all time-dependent phenomena in nature, as well as in technology, are out of equilibrium by definition, nonequilibrium statistical mechanics is an essential research.This computationally intensive research is ideal for involving apprentices at all levels in the discovery process. It will contribute to education at all levels while including women and minorities by involving undergraduate and graduate students and postdoctoral fellows, who will mentor K-12 students. The results of the research will be communicated through articles in a wide spectrum of professional journals, through talks at scientific meetings, and through presentations for the general public, as well as through the World Wide Web.
该奖项支持电化学材料科学中非平衡现象的计算和理论研究的研究和教育。这些研究涉及特定实验系统的建模,对这些系统重要的基本非平衡现象的研究,以及计算和理论方法的进一步发展。将与实验组合作研究的特定实验现象是单晶金表面电化学脉冲电位研究中的岛状生长和溶解,并验证了PI的计算机模拟所提出的研究电极表面动力学的新方法。特别是非平衡现象的研究,包括电化学金属沉积过程中的横向扩散的影响,在非均相催化反应,和滞后系统,驱动远离平衡的振荡力。主要方法,将被用于在拟议的研究是大规模的计算机模拟模型系统。将使用连续和离散模型,计算方法将包括动力学蒙特卡罗(KMC)模拟和随机微分方程的数值解,两者都具有从量子力学密度泛函理论计算获得的模型参数。模拟数据将使用几种理论方法进行分析,包括有限尺寸标度理论,随机过程理论和统计学。该研究具有更广泛的影响,超出了特定的科学调查,并广泛有助于理解非平衡过程的问题,与技术发展相关,并具有教育效益。由于自然界和技术中所有与时间相关的现象根据定义都是不平衡的,因此非平衡统计力学是一个重要的研究领域。这项研究增加了我们对非平衡过程的基本理解。更具体地说,这项研究提高了对电极-电解质界面非平衡过程的理解,从而有助于未来开发新的基于电化学的先进纳米材料制造工艺。通过研究开发的这些基础知识和仿真算法适用于许多科学和技术领域,包括材料科学,化学,生物学,甚至通信网络和电网的设计和分析。这种计算密集型的研究是理想的,涉及在发现过程中的各个层次的学徒。它将促进各级教育,同时包括妇女和少数民族,让本科生、研究生和博士后研究员参与,他们将指导K-12学生。研究成果将通过专业期刊上的文章、科学会议上的演讲、公众演讲以及万维网进行传播。非技术概要:该奖项支持理论和计算研究,以及通过电化学方法在纳米尺度(约一千万分之一英寸)上生长材料和原子结构的教育。在过去的二十年中,实验技术已经变得可用,使电化学方法能够制造高科技材料,这些材料的功能来自纳米尺度的结构。这些方法正在迅速成为传统方法的成本效益替代品。这些令人印象深刻的实验发展与计算机技术和计算方法的惊人进步相匹配。PI将使用计算机模拟方法研究纳米结构如何在浸入化学溶液中的电极材料表面生长,电流流过电极。对这些增长现象的研究推进了对本质上不平衡的现象的理解,这是现代统计物理学中一个非常感兴趣的领域。由于自然界和技术中所有与时间相关的现象都是不平衡的,因此非平衡统计力学是一项必不可少的研究。这种计算密集型的研究非常适合让各个层次的学徒参与发现过程。它将促进各级教育,同时包括妇女和少数民族,让本科生、研究生和博士后研究员参与,他们将指导K-12学生。研究结果将通过各种专业期刊上的文章、科学会议上的谈话、向公众介绍以及通过万维网进行传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Per Arne Rikvold其他文献

Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising ferromagnet at low temperatures.
低温下方晶格伊辛铁磁体亚稳态寿命中不同前因子的标度分析。
生態進化モデルの多様性の揺らぎと種の寿命分布
生态进化模型中多样性和物种寿命分布的波动
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    村瀬洋介;島田尚;伊藤伸泰;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
Slow forcing in the projective dynamics method
射影动力学方法中的慢力
  • DOI:
    10.1016/s0010-4655(99)00347-1
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    M. A. Novotny;M. Kolesik;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
量子モンテカルロ法による新しい量子相・量子臨界現象の探求
利用量子蒙特卡罗方法探索新的量子相和量子临界现象
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold;藤堂眞治
  • 通讯作者:
    藤堂眞治
Critical temperature and correlation length of an elastic interaction model for spin-crossover materials
自旋交叉材料弹性相互作用模型的临界温度和相关长度
  • DOI:
    10.1103/physrevb.85.054408
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold

Per Arne Rikvold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Per Arne Rikvold', 18)}}的其他基金

Computational studies of nonequilibrium processes in electrochemical materials science and catalysis
电化学材料科学和催化中非平衡过程的计算研究
  • 批准号:
    1104829
  • 财政年份:
    2011
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Computational Studies in Electrochemical Materials Science by Statistical-Mechanical and Ab-Initio Methods
电化学材料科学中统计力学和从头计算方法的计算研究
  • 批准号:
    0240078
  • 财政年份:
    2003
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Computational Studies of Statistical-Mechanical Models in Electrochemical Materials Science
电化学材料科学中统计力学模型的计算研究
  • 批准号:
    9981815
  • 财政年份:
    2000
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Computational Studies of Dynamical Phenomena in Nanoscale Ferromagnets
纳米级铁磁体动力学现象的计算研究
  • 批准号:
    9871455
  • 财政年份:
    1998
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9634873
  • 财政年份:
    1997
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
NSF-CGP Science Fellowship Program: Theoretical and Numerical Investigations of Relaxation in Metastable Systems
NSF-CGP 科学奖学金计划:亚稳态系统弛豫的理论和数值研究
  • 批准号:
    9512679
  • 财政年份:
    1996
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9315969
  • 财政年份:
    1994
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9013107
  • 财政年份:
    1991
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Theoretical studies of nonequilibrium open systems using nonperturbative approaches
使用非微扰方法对非平衡开放系统进行理论研究
  • 批准号:
    21K13859
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studies of the glass transtion in nonequilibrium, non-uniform, and not-standard liquids
非平衡、不均匀和非标准液体中玻璃化转变的研究
  • 批准号:
    16H04034
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Studies of Accelerated Low Temperature Combustion Kinetics by Nonequilibrium Plasmas
非平衡等离子体加速低温燃烧动力学的基础研究
  • 批准号:
    1402640
  • 财政年份:
    2014
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Computational Studies of Nonequilibrium Dynamics of Classical and Quantum Materials
经典和量子材料非平衡动力学的计算研究
  • 批准号:
    1206233
  • 财政年份:
    2012
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Computational studies of nonequilibrium processes in electrochemical materials science and catalysis
电化学材料科学和催化中非平衡过程的计算研究
  • 批准号:
    1104829
  • 财政年份:
    2011
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Studies in Nonequilibrium Behaviors of Tagged Particles
标记粒子的非平衡行为研究
  • 批准号:
    0504193
  • 财政年份:
    2005
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Nonequilibrium, Single-Molecule Studies of Protein Unfolding
蛋白质展开的非平衡、单分子研究
  • 批准号:
    0505814
  • 财政年份:
    2005
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Equilibrium and nonequilibrium studies of interfaces in soft-condensed matter
软凝聚态物质界面的平衡和非平衡研究
  • 批准号:
    105732-1998
  • 财政年份:
    2004
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Discovery Grants Program - Individual
In situ studies of nonequilibrium spin dynamics in ultrathin magnetic systems using femtosecond magneto-optics and UHV
使用飞秒磁光和特高压对超薄磁系统中的非平衡自旋动力学进行原位研究
  • 批准号:
    261236-2003
  • 财政年份:
    2004
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Discovery Grants Program - Individual
In situ studies of nonequilibrium spin dynamics in ultrathin magnetic systems using femtosecond magneto-optics and UHV
使用飞秒磁光和特高压对超薄磁系统中的非平衡自旋动力学进行原位研究
  • 批准号:
    261236-2003
  • 财政年份:
    2003
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了