Computational Studies of Dynamical Phenomena in Nanoscale Ferromagnets

纳米级铁磁体动力学现象的计算研究

基本信息

  • 批准号:
    9871455
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

9871455 Novotny This is a theoretical and computational research grant which aims to explore the properties of magnets on the nanometer scale using high performance computers and state-of-the-art algorithms. Advances in the past decade have opened up the possibility of understanding and designing materials at the nanometer scale. At the same time there have been tremendous advances in computational algorithms and computer architectures which make it possible to realistically study these materials. The specific study of magnetic nanoparticles and ultrathin films is of importance for reliable ultrahigh-density magnetic storage. In this case a single bit of information will be stored in a single-domain nanoscale magnetic particle. Consequently, it is vitally important to understand the stability of these domains, their dynamical properties, and their behavior at finite temperatures. This requires intensive large-scale numerical simulations of realistic models of technologically important magnetic materials. This grant will develop novel algorithms for hysteresis and thermally driven magnetizatin reversal models of nanoscale ferromagnets. The materials objective of this research will be to improve our understanding of dynamical phenomena in real ferromagnetic materials in restricted geometries at nonzero temperatures. The materials to be modeled include ultrathin films, whiskers and nanometer-sized single-domain particles. The models to be used include the clock-and continuum-spin models with finite spin anisotropy, effects of magnetostatic interactions, systems with defects and quenched disorder, models of ferrimagnets, and quantum spin models. To study these models, novel algorithms will be further developed. These include the Projective Dynamics and the Monte Carlo with Absorbing Markov Chain algorithms. It is also proposed to initiate large-scale studies of continuum- spin models using, and further developing, Langevin micromagnetic methods f or finite-temperature simulations. Successful completion of this research will lead to a better understanding of the dynamics of magnetization switching in real nanoscale magnetic materials. The algorithms developed should have broad application. %%% This is a theoretical and computational research grant which aims to explore the properties of magnets on the nanometer scale using high performance computers and state-of-the-art algorithms. Advances in the past decade have opened up the possibility of understanding and designing materials at the nanometer scale. At the same time there have been tremendous advances in computational algorithms and computer architectures which make it possible to realistically study these materials. The specific study of magnetic nanoparticles and ultrathin films is of importance for reliable ultrahigh-density magnetic storage. In this case a single bit of information will be stored in a single-domain nanoscale magnetic particle. Consequently, it is vitally important to understand the stability of these domains, their dynamical properties, and their behavior at finite temperatures. This requires intensive large-scale numerical simulations of realistic models of technologically important magnetic materials. ***
9871455诺沃特尼这是一项理论和计算研究基金,旨在使用高性能计算机和最先进的算法在纳米尺度上探索磁铁的特性。过去十年的进步使人们有可能在纳米尺度上理解和设计材料。与此同时,在计算算法和计算机体系结构方面有了巨大的进步,这使得现实地研究这些材料成为可能。磁性纳米颗粒和超薄膜的具体研究对于实现可靠的超高密度磁存储具有重要意义。在这种情况下,一位信息将存储在单域纳米级磁性粒子中。因此,了解这些区域的稳定性、它们的动力学性质以及它们在有限温度下的行为是至关重要的。这需要对具有重要技术意义的磁性材料的真实模型进行密集的大规模数值模拟。这笔资金将为纳米级铁磁体的磁滞和热驱动磁化反转模型开发新的算法。这项研究的材料目标是提高我们对实际铁磁材料在非零温度下受限几何结构中的动力学现象的理解。被模拟的材料包括超薄膜、晶须和纳米尺寸的单域粒子。所使用的模型包括具有有限自旋各向异性的钟自旋模型和连续自旋模型、静磁相互作用的影响、具有缺陷和猝灭无序的系统、亚铁磁体模型和量子自旋模型。为了研究这些模型,将进一步开发新的算法。其中包括投影动力学和具有吸收马尔可夫链的蒙特卡罗算法。还建议利用朗之万微磁学方法对连续介质自旋模型进行大规模的研究,并进一步发展有限温度模拟。这项研究的成功完成将有助于更好地理解真实纳米磁性材料中磁化转变的动力学。所开发的算法应该具有广泛的应用前景。这是一项理论和计算研究基金,旨在使用高性能计算机和最先进的算法在纳米尺度上探索磁体的特性。过去十年的进步使人们有可能在纳米尺度上理解和设计材料。与此同时,在计算算法和计算机体系结构方面有了巨大的进步,这使得现实地研究这些材料成为可能。磁性纳米颗粒和超薄膜的具体研究对于实现可靠的超高密度磁存储具有重要意义。在这种情况下,一位信息将存储在单域纳米级磁性粒子中。因此,了解这些区域的稳定性、它们的动力学性质以及它们在有限温度下的行为是至关重要的。这需要对具有重要技术意义的磁性材料的真实模型进行密集的大规模数值模拟。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Per Arne Rikvold其他文献

Scaling analysis of a divergent prefactor in the metastable lifetime of a square-lattice Ising ferromagnet at low temperatures.
低温下方晶格伊辛铁磁体亚稳态寿命中不同前因子的标度分析。
生態進化モデルの多様性の揺らぎと種の寿命分布
生态进化模型中多样性和物种寿命分布的波动
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    村瀬洋介;島田尚;伊藤伸泰;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
量子モンテカルロ法による新しい量子相・量子臨界現象の探求
利用量子蒙特卡罗方法探索新的量子相和量子临界现象
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold;藤堂眞治
  • 通讯作者:
    藤堂眞治
Critical temperature and correlation length of an elastic interaction model for spin-crossover materials
自旋交叉材料弹性相互作用模型的临界温度和相关长度
  • DOI:
    10.1103/physrevb.85.054408
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taro Nakada;Takashi Mori;Seiji Miyashita;Masamichi Nishino;Synge Todo;William Nicolazzi;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold
Slow forcing in the projective dynamics method
射影动力学方法中的慢力
  • DOI:
    10.1016/s0010-4655(99)00347-1
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    M. A. Novotny;M. Kolesik;Per Arne Rikvold
  • 通讯作者:
    Per Arne Rikvold

Per Arne Rikvold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Per Arne Rikvold', 18)}}的其他基金

Computational studies of nonequilibrium processes in electrochemical materials science and catalysis
电化学材料科学和催化中非平衡过程的计算研究
  • 批准号:
    1104829
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Computational Studies of Nonequilibrium processes in Electrochemical Materials Science
电化学材料科学中非平衡过程的计算研究
  • 批准号:
    0802288
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Computational Studies in Electrochemical Materials Science by Statistical-Mechanical and Ab-Initio Methods
电化学材料科学中统计力学和从头计算方法的计算研究
  • 批准号:
    0240078
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Computational Studies of Statistical-Mechanical Models in Electrochemical Materials Science
电化学材料科学中统计力学模型的计算研究
  • 批准号:
    9981815
  • 财政年份:
    2000
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9634873
  • 财政年份:
    1997
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
NSF-CGP Science Fellowship Program: Theoretical and Numerical Investigations of Relaxation in Metastable Systems
NSF-CGP 科学奖学金计划:亚稳态系统弛豫的理论和数值研究
  • 批准号:
    9512679
  • 财政年份:
    1996
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9315969
  • 财政年份:
    1994
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Non-Perturbative Numerical Studies of Lattice-Gas Models in Materials Science
材料科学中晶格气体模型的非微扰数值研究
  • 批准号:
    9013107
  • 财政年份:
    1991
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

Single Molecule Studies for Characterizing Dynamical and Mechanical Properties of Glassy Systems
用于表征玻璃系统动力学和机械性能的单分子研究
  • 批准号:
    2246765
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
  • 批准号:
    22K03411
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Dynamical Studies of Time-resolved Nonlinear Optical Signals from Spatially Oriented Electronic Energy Transfer Complexes
空间定向电子能量传输复合物的时间分辨非线性光信号的量子动力学研究
  • 批准号:
    2102013
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
New studies of foliations and dynamical systems, and their applications
叶状结构和动力系统的新研究及其应用
  • 批准号:
    21H00980
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IRES Track II: Advanced Studies Institutes in Analysis on Fractal Spaces, Dynamical Systems and Mathematical Physics
IRES Track II:分形空间、动力系统和数学物理分析的高级研究机构
  • 批准号:
    1953471
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Neutron spin echo and small angle neutron scattering studies on dynamical properties of topological spin orders
拓扑自旋序动力学性质的中子自旋回波和小角中子散射研究
  • 批准号:
    19H01856
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multifaceted studies on dynamical problems in the calculus of variations using geometric measure theory
利用几何测度理论对变分法动力学问题进行多方面研究
  • 批准号:
    18H03670
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Observational and numerical studies that connect the physical and dynamical evolution of near-Earth asteroids
连接近地小行星的物理和动力学演化的观测和数值研究
  • 批准号:
    18K03730
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamical, thermodynamical and cloud-microphysical studies of violent wind and heavy rain-producing tropical cyclones: Quantitative improvement of intensity estimations/forecasts
产生强风和暴雨的热带气旋的动力、热力学和云微物理研究:强度估计/预测的定量改进
  • 批准号:
    16H06311
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Numerical Studies of the Dynamical Orbital Interplay between the Inner and Outer Planets
内行星和外行星之间动态轨道相互作用的数值研究
  • 批准号:
    1615975
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了