Combined Micromechanical-Biochemical Study of Mitotic Chromosome Structure

有丝分裂染色体结构的微机械-生化联合研究

基本信息

  • 批准号:
    0240998
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-10-01 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

This project is a study of the structure of the mitotic chromosome of animal cells. For this work the investigator will use a unique combination of micromanipulation and biochemical techniques. Biophysical force measurements will be used to assay biochemically-introduced structural changes in mitotic chromosomes. In this way the role of specific types of molecules in defining mitotic chromosome structure can be quantitatively studied. Preliminary results indicate that DNA itself provides the structural integrity of the folded mitotic chromosome. These results challenge the classical protein scaffold model of mitotic chromosome structure, and indicate the value of this approach in ruling out specific models of chromosome structure. The first objective of this project is further study of DNA connectivity in the mitotic chromosome in this way, and to extend these measurements to Xenopus chromosomes. Additional enzyme experiments will study the role of RNA and protein in mitotic chromosome structure. A second objective is to compare the physical properties of Xenopus chromosomes from cells with chromatids reconstituted using Xenopus egg extracts. A third objective is to characterize the interchromosome filaments observed when chromosomes are removed from cells during mitosis, and in particular to quantify their DNA content. The question of whether or not there is a contiguous protein skeleton inside the mitotic chromosome is a basic and open topic in cell biology. Understanding the relation of reconstituted chromosomes to chromosomes in cells is extremely important given the general assumption that the former system is an accurate model of chromosomes. Finally, putting the question of existence of mitotic interchromosome filaments on solid ground will demand new thinking about many assumptions about mitotic chromosome structure. Broader impacts of this research will be the development of new biophysical techniques (nanonewton-scale force measurement, microfluidic enzymatic treatments) for the study of chromosome structure. Along with this, the proposed activities will focus on research education for Ph.D. students, combining physics and biology. There is currently a national shortage of young scientists with this kind of training. This project will therefore uniquely strengthen the scientific personnel and technique pools in this growth area.
本项目是对动物细胞有丝分裂染色体结构的研究。对于这项工作,研究者将使用显微操作和生化技术的独特组合。生物物理力测量将用于测定有丝分裂染色体中生物化学引入的结构变化。通过这种方式,可以定量研究特定类型的分子在确定有丝分裂染色体结构中的作用。初步结果表明,DNA本身提供了折叠有丝分裂染色体的结构完整性。这些结果挑战了经典的有丝分裂染色体结构的蛋白质支架模型,并表明该方法在排除染色体结构的特定模型方面的价值。该项目的第一个目标是通过这种方式进一步研究有丝分裂染色体中的DNA连通性,并将这些测量扩展到非洲爪蟾染色体。另外的酶实验将研究RNA和蛋白质在有丝分裂染色体结构中的作用。第二个目的是比较使用爪蟾卵提取物重建的染色单体和爪蟾染色体的物理性质。第三个目标是描述有丝分裂期间染色体从细胞中移除时观察到的染色体间细丝,特别是量化它们的DNA含量。有丝分裂染色体内是否存在连续的蛋白质骨架是细胞生物学中一个基本而开放的话题。考虑到前一系统是染色体的精确模型这一普遍假设,理解细胞中重组染色体与染色体的关系是极其重要的。最后,将有丝分裂染色体间丝的存在问题置于坚实的基础之上,将需要对有丝分裂染色体结构的许多假设进行新的思考。这项研究的更广泛的影响将是开发新的生物物理技术(纳米牛顿尺度的力测量,微流体酶处理)来研究染色体结构。与此同时,计划的活动将集中在物理学和生物学相结合的博士生研究教育上。目前,全国缺乏受过这类训练的年轻科学家。因此,该项目将独特地加强这一增长领域的科学人员和技术储备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Marko其他文献

John Marko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Marko', 18)}}的其他基金

2019 Chromosome Dynamics GRC: Genetic, Molecular and Physical Views of Genomes and Their Organizational Principles
2019年染色体动力学GRC:基因组的遗传、分子和物理观点及其组织原理
  • 批准号:
    1914406
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical mechanics of DNA-protein interactions and chromosome organization
DNA-蛋白质相互作用和染色体组织的统计力学
  • 批准号:
    1206868
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Micromechanical Analysis of Chromosome Structure
染色体结构的微观力学分析
  • 批准号:
    1022117
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Self-organization, molecular mechanics, and catalytic functions of nucleoprotein complexes studied using single-DNA micromanipulation
使用单 DNA 显微操作研究核蛋白复合物的自组织、分子力学和催化功能
  • 批准号:
    0852130
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Mechanics of DNA-Protein Interactions and Chromosome Organization
DNA-蛋白质相互作用和染色体组织的统计力学
  • 批准号:
    0715099
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Statistical Mechanics of DNA-Protein Interactions and Chromosome Organization
DNA-蛋白质相互作用和染色体组织的统计力学
  • 批准号:
    0605895
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Self-organization, molecular mechanics, and catalytic functions of nucleoprotein complexes studied using single-DNA micromanipulation
使用单 DNA 显微操作研究核蛋白复合物的自组织、分子力学和催化功能
  • 批准号:
    0445565
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Theory of Single-Molecule Study of Biomolecule Interactions and Chromosome Structure
生物分子相互作用和染色体结构的单分子研究理论
  • 批准号:
    0203963
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Integrated Teaching and Research on Molecule and Cell Biophysics
职业:分子和细胞生物物理学的综合教学和研究
  • 批准号:
    9734178
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Replicating the cartilage micromechanical environment
复制软骨微机械环境
  • 批准号:
    DP240102160
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
  • 批准号:
    10715565
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of mechanisms underlying mechanical stimulus perception and Ca2+ propagation by micromechanical stimulation in living cells
阐明活细胞中微机械刺激机械刺激感知和 Ca2+ 传播的机制
  • 批准号:
    23K18133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
  • 批准号:
    2143808
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multimodal and Multiscale-driven Quantification of Micromechanical Metrics for Location-specific Fatigue Microcracking
特定位置疲劳微裂纹的多模态和多尺度驱动的微机械指标量化
  • 批准号:
    2152369
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
  • 批准号:
    10533408
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Towards a Micromechanical Damage Model for Lightweight Materials in Vehicle Crash
车辆碰撞中轻质材料的微机械损伤模型
  • 批准号:
    RGPIN-2017-04716
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
  • 批准号:
    2740323
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了