Statistical and Computational Approaches for Integrated Genomics and Proteomics Analysis and Their Applications to Modeling G1/S Transition During Yeast Cell Cycle
整合基因组学和蛋白质组学分析的统计和计算方法及其在酵母细胞周期 G1/S 转变建模中的应用
基本信息
- 批准号:0241160
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in technologies are changing the field of biology to move beyond genomes to transcriptomes, proteomes and metabolomes. It has become clear that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting and bioengineering. Although the importance of integrating various types of biological data to address scientific questions is well recognized and appreciated, the potential information carried in different types of data may not be fully realized without a sound and comprehensive statistical framework to integrate these data. In addition, close collaborations among statisticians, biologists, bioinformaticians, and computer scientists are essential to ensure that these statistical methods provide a reasonable description of the biological processes studied and the validity of these methods should be rigorously tested through biological experiments. In this project, a team of researchers with expertise in statistics, genomics and proteomics, bioinformatics, and computer science will develop an integrated approach to reconstructing biological pathways. Statistical and computational methods will be developed to better identify transcription factor targets, to integrate yeast two-hybrid data, protein complex data, protein localization data, and gene expression data to infer protein interaction networks, and to further integrate DNA- protein binding data to reconstruct transcriptional regulatory networks. This project focuses on the G1/S transition during the yeast cell cycle to statistically model and experimentally validate inferred regulatory networks. In addition, parallel computing methods will be developed to overcome the computing bottleneck in the analysis of large-scale networks. The resources generated from this project, both computer programs and network information will be made available to the scientific community. It is anticipated that this project will lead to a statistical framework that can be utilized to dissect biological pathways and also will lead to an approach to integrating expertise from diverse disciplines to address important scientific problems in the post-genome era.With recent progresses in biotechnologies, it has become reality to collect tens of thousands of gene expression and protein expression levels in humans and other organisms. In addition, scientists now are able to monitor interactions among proteins and interactions between proteins and DNA sequences, to investigate the location that each gene is expressed, and to study the overall effects on the whole organism of individual genes through large collections of mutation strains. The availability of such data has led to a revolution in biological and biomedical sciences. Although there is a great potential and an enormous amount of information in these data, the major challenge is how to best integrate, analyze, and interpret these data to understand biological pathways. In this project, statistical and computational methods will be developed to integrate various types of data in an effort to reconstruct biological pathways with a focus on the understanding of gene regulations in cell cycle. The statistical models to be developed will be validated with biological experiments. Computer programs will be developed and distributed to the scientific community after extensive testing to allow biologists and medical researchers to use these tools to study other biological pathways. This project will also develop high-performance computing approaches to implementing the developed methods and will involve training activities in the general area of computational biology and bioinformatics. This grant is made under the Joint DMS/NIGMS Initiative to Support Research Grants in the Area of Mathematical Biology. This is a joint competition sponsored by the Division of Mathematical Sciences (DMS) at the National Science Foundation and the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health.
技术的进步正在改变生物学领域,使其超越基因组,进入转录组、蛋白质组和代谢组。 很明显,需要将预测建模与系统的实验验证相结合,以更深入地了解生物体,治疗靶向和生物工程。 虽然人们充分认识到和理解整合各种类型的生物数据以解决科学问题的重要性,但如果没有一个健全和全面的统计框架来整合这些数据,就可能无法充分实现不同类型的数据所载的潜在信息。 此外,统计学家,生物学家,生物信息学家和计算机科学家之间的密切合作是必不可少的,以确保这些统计方法提供了一个合理的描述所研究的生物过程,这些方法的有效性应通过生物实验进行严格的测试。 在这个项目中,一个具有统计学,基因组学和蛋白质组学,生物信息学和计算机科学专业知识的研究人员团队将开发一种重建生物途径的综合方法。 将开发统计和计算方法以更好地鉴定转录因子靶标,整合酵母双杂交数据、蛋白质复合物数据、蛋白质定位数据和基因表达数据以推断蛋白质相互作用网络,并进一步整合DNA-蛋白质结合数据以重建转录调控网络。 该项目的重点是在酵母细胞周期中的G1/S转换,以统计建模和实验验证推断的调控网络。 此外,将开发并行计算方法,以克服大规模网络分析中的计算瓶颈。 该项目产生的资源,包括计算机程序和网络信息,将提供给科学界。 预计这一项目将导致一个统计框架,可用于剖析生物途径,也将导致一种方法,整合不同学科的专门知识,以解决后基因组时代的重要科学问题,随着生物技术的最新进展,收集人类和其他生物体中数以万计的基因表达和蛋白质表达水平已成为现实。 此外,科学家现在能够监测蛋白质之间的相互作用以及蛋白质和DNA序列之间的相互作用,调查每个基因表达的位置,并通过大量的突变菌株来研究单个基因对整个生物体的整体影响。 这些数据的提供导致了生物和生物医学科学的革命。 虽然这些数据中有巨大的潜力和大量的信息,但主要的挑战是如何最好地整合,分析和解释这些数据以了解生物学途径。 本项目将开发统计和计算方法,以整合各种类型的数据,努力重建生物学途径,重点是了解细胞周期中的基因调控。 将通过生物实验验证拟开发的统计模型。 计算机程序将在广泛测试后开发并分发给科学界,以允许生物学家和医学研究人员使用这些工具研究其他生物途径。 该项目还将开发高性能计算方法,以实施所开发的方法,并将涉及计算生物学和生物信息学一般领域的培训活动。这项赠款是根据联合DMS/NIGMS倡议,以支持研究赠款在数学生物学领域。这是一项由美国国家科学基金会数学科学部(DMS)和美国国立卫生研究院国家普通医学科学研究所(NIGMS)赞助的联合竞赛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyu Zhao其他文献
Pivotal variable detection of the covariance matrix and its application to high-dimensional factor models
协方差矩阵的关键变量检测及其在高维因子模型中的应用。
- DOI:
10.1007/s11222-017-9762-6 - 发表时间:
2017-07 - 期刊:
- 影响因子:2.2
- 作者:
Junlong Zhao;Hongyu Zhao;Lixing Zhu - 通讯作者:
Lixing Zhu
Characteristics of Calcium Isotopes at Different Water Depths and Their Palaeoenvironmental Significance for Carbonate Rocks of the Permian-Triassic Boundary in Chibi, Southern China
赤壁二叠系-三叠系界线碳酸盐岩不同水深钙同位素特征及其古环境意义
- DOI:
10.3390/min12111440 - 发表时间:
2022-11 - 期刊:
- 影响因子:2.5
- 作者:
Hongyu Zhao;Junhua Huang - 通讯作者:
Junhua Huang
Leveraging protein quaternary structure to identify oncogenic driver mutations
利用蛋白质四级结构识别致癌驱动突变
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3
- 作者:
Gregory A. Ryslik;Yuwei Cheng;Y. Modis;Hongyu Zhao - 通讯作者:
Hongyu Zhao
Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion
基于足部惯性传感器和多传感器融合的自适应步态检测
- DOI:
10.1016/j.inffus.2019.03.002 - 发表时间:
2019-12 - 期刊:
- 影响因子:18.6
- 作者:
Hongyu Zhao;Zhelong Wang;Sen Qiu;Jiaxin Wang;Fang Xu;Zhengyu Wang;Yanming Shen - 通讯作者:
Yanming Shen
Estimating genetic correlation jointly using individual-level and summary-level GWAS data
使用个体水平和汇总水平 GWAS 数据联合估计遗传相关性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yiliang Zhang;Youshu Cheng;Yixuan Ye;Wei Jiang;Q. Lu;Hongyu Zhao - 通讯作者:
Hongyu Zhao
Hongyu Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyu Zhao', 18)}}的其他基金
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106738 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: A General Framework for High Throughput Biological Learning: Theory Development and Applications
协作研究:高通量生物学习的通用框架:理论发展和应用
- 批准号:
0714817 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Statistical approaches and computational tools for analyzing spatially-resolved single-cell transcriptomics data
职业:用于分析空间分辨单细胞转录组数据的统计方法和计算工具
- 批准号:
2047611 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Computational and Statistical Approaches to Regression Problems in the Presence of Linkage Errors
存在联动误差时回归问题的计算和统计方法
- 批准号:
2120318 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Advanced Statistical and Computational approaches for Exposome profiling and integration: applications to cancer and environmental epidemiology
用于暴露组分析和整合的先进统计和计算方法:在癌症和环境流行病学中的应用
- 批准号:
2286505 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Studentship
Collaborative Research: Novel Computational and Statistical Approaches to Prediction and Estimation
协作研究:预测和估计的新颖计算和统计方法
- 批准号:
1841187 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures
CDS
- 批准号:
1621787 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Computational and Statistical Approaches to Prediction and Estimation
协作研究:预测和估计的新颖计算和统计方法
- 批准号:
1521529 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Computational and Statistical Approaches to Prediction and Estimation
协作研究:预测和估计的新颖计算和统计方法
- 批准号:
1521544 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Phylogenetic clustering: new statistical inference and computational approaches to identify patterns of transmission of HIV and Hepatitis C.
系统发育聚类:识别艾滋病毒和丙型肝炎传播模式的新统计推断和计算方法。
- 批准号:
274502 - 财政年份:2012
- 资助金额:
$ 120万 - 项目类别:
Operating Grants
Computational and mathematical approaches for statistical sequence alignment and phylogenetic inference on emerging parallel architectures
对新兴并行架构进行统计序列比对和系统发育推断的计算和数学方法
- 批准号:
200966394 - 财政年份:2011
- 资助金额:
$ 120万 - 项目类别:
Research Grants
CDI-Type II: Collaborative Research: Integrating Statistical and Computational Approaches to Privacy
CDI-类型 II:协作研究:整合隐私统计和计算方法
- 批准号:
0941226 - 财政年份:2010
- 资助金额:
$ 120万 - 项目类别:
Standard Grant