Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
基本信息
- 批准号:1106738
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research proposed in this project is motivated by the following problem. In many genetic studies, in addition to gene expression data, other types f data are collected from the same individuals. The problem is how to make use of this additional information when construct gene networks. The investigators formulate this problem by a conditional Gaussian graphical model (CGGM), in which the external variables are incorporated as predictors. They propose an estimation procedure for this model by combining reproducing kernel Hilbert space with the lasso type regularization. The former is used to construct a model-free estimate of the conditional covariance matrix, and the latter is used to derive a sparse estimators of the conditional precision matrix, whose zero entry pattern correspond to a graph that describes the gene network. They propose to study the asymptotic properties, to introduce methods to determine the tuning constants, and to develop standardized and openly accessible computer programs for this model. Furthermore, the investigators propose to extend the CGGM in two directions. First, they propose to relax the Gaussian assumption by applying a copula transformation to the residuals and then using pseudo likelihood to estimate conditional correlations. These are then subject to the lasso-type regularization to yield sparse estimator of the precision matrix. The second direction is the development of sufficient graphical model, which is a mechanism to simultaneously reduce the dimension of the predictor and estimate the graphical structure of the response.High-throughput technologies that enable researchers to collect and monitor information at the genome level have revolutionized the field of biology in the past fifteen years. These data offer unprecedented amount and diverse types of data that reveal different aspects of the biological processes. At the same time, they also present many statistical and computational challenges that cannot be addressed by traditional statistical methods. In current genomics research it has become increasingly clear that statistical analysis based on individual genes may incur loss of information on the biological process under study. For example, a widely known study on identifying genetic patterns of diabetic patients show that no single gene could stand out statistically as responsible for the patterns, and yet clear signals emerged when genes were analyzed in groups. Motivated by this observation, greater attention has been paid to networks of genes. The investigators propose a class of new statistical methods, called conditional graphical models, for constructing gene networks that can take into account of a set of covariates. They also plan to develop theoretical properties and computer programs for the proposed methods. Although their inquire began with gene networks, the investigators envision conditional graphical models to have broad applications beyond genomics, such as in predicting asset returns and in studying social networks, which are becoming all the more prevalent in this age of Internet.
本项目提出的研究是出于以下问题。在许多遗传学研究中,除了基因表达数据外,还从同一个体收集其他类型的数据。问题是在构建基因网络时如何利用这些附加信息。研究人员通过条件高斯图模型(CGGM)来阐述这个问题,其中外部变量被纳入作为预测变量。他们通过将再生核希尔伯特空间与套索类型正则化相结合,提出了该模型的估计过程。前者用于构造条件协方差矩阵的无模型估计,后者用于导出条件精度矩阵的稀疏估计量,其零条目模式对应于描述基因网络的图。他们建议研究渐近性质,引入确定调整常数的方法,并为此模型开发标准化且可公开访问的计算机程序。此外,研究人员建议将 CGGM 向两个方向扩展。首先,他们建议通过对残差应用联结变换来放松高斯假设,然后使用伪似然来估计条件相关性。然后对它们进行套索型正则化,以产生精度矩阵的稀疏估计器。第二个方向是开发足够的图形模型,这是一种同时减少预测变量维度和估计响应图形结构的机制。高通量技术使研究人员能够在基因组水平上收集和监测信息,在过去十五年里彻底改变了生物学领域。这些数据提供了前所未有的数量和不同类型的数据,揭示了生物过程的不同方面。同时,它们还提出了许多传统统计方法无法解决的统计和计算挑战。在当前的基因组学研究中,越来越清楚的是,基于个体基因的统计分析可能会导致所研究的生物过程的信息丢失。例如,一项广为人知的关于识别糖尿病患者遗传模式的研究表明,没有任何一个基因能够在统计学上脱颖而出,对这些模式负责,但当对基因进行分组分析时,会出现清晰的信号。受这一观察的推动,基因网络受到了更多关注。研究人员提出了一类新的统计方法,称为条件图模型,用于构建可以考虑一组协变量的基因网络。他们还计划为所提出的方法开发理论特性和计算机程序。尽管他们的研究始于基因网络,但研究人员设想条件图形模型具有基因组学之外的广泛应用,例如预测资产回报和研究社交网络,这些在互联网时代变得越来越普遍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyu Zhao其他文献
Discovery of 95 PTSD loci provides insight into genetic architecture and neurobiology of trauma and stress-related disorders
95 个 PTSD 位点的发现提供了对创伤和压力相关疾病的遗传结构和神经生物学的深入了解
- DOI:
10.1101/2023.08.31.23294915 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
C. Nievergelt;A. Maihofer;Elizabeth G Atkinson;Chia;Karmel W Choi;RI Jonathan;N. Daskalakis;L. Duncan;R. Polimanti;Cindy Aaronson;A. Amstadter;Soren B Andersen;O. Andreassen;P. Arbisi;A. Ashley;Bryn Austin;E. Avdibegović;D. Babic;S. Bacanu;D. Baker;Anthony K. Batzler;J. Beckham;S. Belangero;C. Benjet;C. Bergner;L. Bierer;Joanna M. Biernacka;L. Bierut;J. Bisson;M. Boks;Elizabeth A. Bolger;Amber Brandolino;G. Breen;R. Bressan;Richard A. Bryant;A. Bustamante;J. Bybjerg;Marie Bækvad;A. Børglum;S. Børte;L. Cahn;Joseph R. Calabrese;J. Caldas;Chris Chatzinakos;Sheraz Y. Cheema;S. Clouston;L. Colodro;B. Coombes;C. Cruz;A. Dale;S. Dalvie;Lea K. Davis;J. Deckert;D. Delahanty;Michelle F. Dennis;T. deRoon;F. Désarnaud;Christopher P. DiPietro;S. Disner;A. Docherty;K. Domschke;G. Dyb;A. Kulenović;H. Edenberg;Alexandra Evans;Chiara Fabbri;N. Fani;L. Farrer;A. Feder;N. Feeny;J. Flory;David Forbes;C. Franz;S. Galea;M. Garrett;B. Gelaye;J. Gelernter;E. Geuze;Charles F. Gillespie;Aferdita Goçi;Slavina Goleva;Scott D. Gordon;L. Grasser;C. Guindalini;Magali Haas;S. Hagenaars;Mike Hauser;A. Heath;MJ Sian;Hemmings;V. Hesselbrock;I. Hickie;Kelleigh Hogan;D. Hougaard;Hailiang Huang;L. Huckins;K. Hveem;M. Jakovljevič;A. Javanbakht;Gregory D Jenkins;Jessica Johnson;Ian Jones;T. Jovanović;Karen;M. Kaufman;J. Kennedy;R. Kessler;Alaptagin Khan;N. Kimbrel;A. King;N. Koen;Roman Kotov;H. Kranzler;Kristi Krebs;W. Kremen;Pei;B. Lawford;L. Lebois;K. Lehto;D. Levey;Catrin E Lewis;Israel Liberzon;S. Linnstaedt;M. Logue;A. Lori;Yi Lu;B. Luft;Michelle K. Lupton;J. Luykx;I. Makotkine;J. Maples;S. Marchese;Charles Marmar;Nicholas G. Martin;G. Martinez;K. McAloney;Alexander McFarlane;Katie A McLaughlin;S. Mclean;S. Medland;D. Mehta;Jacquelyn Meyers;V. Michopoulos;Elizabeth A Mikita;L. Milani;W. Milberg;Mark W. Miller;R. Morey;C. P. Morris;O. Mors;P. Mortensen;M. Mufford;E. Nelson;M. Nordentoft;S. Norman;N. Nugent;M. O'Donnell;H. Orcutt;P. Pan;M. Panizzon;G. Pathak;Edward S Peters;Alan L. Peterson;Matthew Peverill;R. Pietrzak;Melissa A. Polusny;B. Porjesz;A. Powers;Xue J Qin;A. Ratanatharathorn;V. Risbrough;A. Roberts;B. Rothbaum;Alex O. Rothbaum;P. Roy;K. Ruggiero;A. Rung;H. Runz;B. Rutten;Stacey Subbie;G. Salum;Laura A Sampson;S. Sanchez;Marcos L. Santoro;C. Seah;S. Seedat;J. Seng;A. Shabalin;Christina M. Sheerin;D. Silove;Alicia K. Smith;J. Smoller;S. Sponheim;Dan J Stein;S. Stensland;Jennifer S Stevens;J. Sumner;Martin H. Teicher;Wesley K. Thompson;A. Tiwari;E. Trapido;M. Uddin;R. Ursano;M. Zervas;Hongyu Zhao;L. Zoellner;J. Zwart;M. Stein;K. Ressler;K. Koenen - 通讯作者:
K. Koenen
A two-step shapelets based framework for interactional activities recognition
基于两步 shapelet 的交互活动识别框架
- DOI:
10.1007/s11042-022-11987-0 - 发表时间:
2022 - 期刊:
- 影响因子:3.6
- 作者:
Ning Yang;Zhelong Wang;Hongyu Zhao;Xin Shi;Sen Qiu - 通讯作者:
Sen Qiu
Leveraging protein quaternary structure to identify oncogenic driver mutations
利用蛋白质四级结构识别致癌驱动突变
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3
- 作者:
Gregory A. Ryslik;Yuwei Cheng;Y. Modis;Hongyu Zhao - 通讯作者:
Hongyu Zhao
Handbook on Analyzing Human Genetic Data
人类遗传数据分析手册
- DOI:
10.1007/978-3-540-69264-5 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shili Lin;Hongyu Zhao - 通讯作者:
Hongyu Zhao
Adaptive gait detection based on foot-mounted inertial sensors and multi-sensor fusion
基于足部惯性传感器和多传感器融合的自适应步态检测
- DOI:
10.1016/j.inffus.2019.03.002 - 发表时间:
2019-12 - 期刊:
- 影响因子:18.6
- 作者:
Hongyu Zhao;Zhelong Wang;Sen Qiu;Jiaxin Wang;Fang Xu;Zhengyu Wang;Yanming Shen - 通讯作者:
Yanming Shen
Hongyu Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyu Zhao', 18)}}的其他基金
Collaborative Research: A General Framework for High Throughput Biological Learning: Theory Development and Applications
协作研究:高通量生物学习的通用框架:理论发展和应用
- 批准号:
0714817 - 财政年份:2007
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Statistical and Computational Approaches for Integrated Genomics and Proteomics Analysis and Their Applications to Modeling G1/S Transition During Yeast Cell Cycle
整合基因组学和蛋白质组学分析的统计和计算方法及其在酵母细胞周期 G1/S 转变建模中的应用
- 批准号:
0241160 - 财政年份:2003
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210659 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210658 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507078 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507620 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459967 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459931 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:
1418202 - 财政年份:2014
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:
1418172 - 财政年份:2014
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106815 - 财政年份:2011
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
- 批准号:
1124174 - 财政年份:2011
- 资助金额:
$ 8万 - 项目类别:
Standard Grant














{{item.name}}会员




