CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures

CDS

基本信息

  • 批准号:
    1621787
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Associating structures or morphologies of biological parts to their functionalities in larger, complex biosystems is a grand challenge with widespread applications. Approaches to this challenge require efficient tools for quantifying shape differences in structures of interest, extracting normal modes of variability, and using shape as a predictor in regression studies. This project aims to develop computational techniques for analyzing shapes of two types of biological parts: (1) subcortical structures in human brain, represented as 2D surfaces inside MRI-imaged brain volumes, and (2) neurons, represented as tree-like structures obtained using high-resolution microscopy. While recent research, including the Human Connectome Project and the NeuroMorpho database, has focused on imaging-based generation of large databases of such structures, the techniques for systematically analyzing them lag far behind. This interdisciplinary research aims to develop fundamental solutions for characterizing shapes of biological structures using tools from several different areas. It is anticipated that the techniques under development will also be applicable in broader scientific contexts.Current techniques for comparing morphological properties are either purely topological (generally focusing on part counts while ignoring their shapes, e.g. the tree-edit distance) or purely geometrical (focusing on geometries of curves and surfaces). This project aims to bridge the gap between these two approaches by comparing geometries of objects but allowing certain topological variability. It will also address the most challenging issue of shape analysis -- registration of parts across objects -- using Riemannian methods. These tools will also naturally extend to analysis of trees with temporally-evolving structures. The nature of the framework under development -- automatic registration and comparison of parts across brain surfaces and neurons -- makes this approach both novel and challenging, and the tools needed are interdisciplinary. The project will use elements from differential geometry (especially the geometry of Hilbert manifolds), algebra, computational statistics, and imaging sciences to develop efficient solutions. A significant portion of this project will concern development of real-time, scalable algorithms for analyzing large datasets available for studying subcortical anatomy and neuronal morphology.
在更大、更复杂的生物系统中,将生物部分的结构或形态与其功能联系起来是一个广泛应用的巨大挑战。解决这一挑战的方法需要有效的工具来量化感兴趣结构中的形状差异,提取正常的可变性模式,并在回归研究中使用形状作为预测因子。该项目旨在开发用于分析两类生物部分形状的计算技术:(1)人脑皮质下结构,表示为MRI成像的脑体积内的2D表面;(2)神经元,表示为使用高分辨率显微镜获得的树状结构。虽然最近的研究,包括人类连接组项目和NeuroMorpho数据库,都集中在基于成像的这类结构的大型数据库的生成上,但系统分析它们的技术远远落后。这项跨学科研究的目的是利用几个不同领域的工具,开发用于表征生物结构形状的基本解决方案。目前用于比较形态属性的技术或者是纯粹的拓扑学的(通常关注零件的计数而忽略它们的形状,例如树的编辑距离),或者是纯粹的几何(关注曲线和曲面的几何)。该项目旨在通过比较对象的几何形状但允许某些拓扑可变性来弥合这两种方法之间的差距。它还将使用黎曼方法解决形状分析中最具挑战性的问题--跨对象的零件配准。这些工具还将自然而然地扩展到对具有时间演变结构的树木的分析。正在开发的框架的性质--大脑表面和神经元部分的自动注册和比较--使这种方法既新颖又具有挑战性,所需的工具是跨学科的。该项目将使用微分几何(特别是希尔伯特流形的几何)、代数、计算统计学和成像科学的元素来开发有效的解决方案。该项目的一个重要部分将涉及实时、可扩展算法的开发,以分析可用于研究皮质下解剖学和神经元形态的大数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Srivastava其他文献

Geometric Analysis of Axonal Tree Structures
轴突树结构的几何分析
Estimating summary statistics in the spike-train space
估计尖峰序列空间中的汇总统计数据
Statistical Modeling of Functional Data
功能数据的统计建模
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Srivastava;E. Klassen
  • 通讯作者:
    E. Klassen
A Two-Step Geometric Framework For Density Modeling
密度建模的两步几何框架
  • DOI:
    10.5705/ss.202018.0231
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Sutanoy Dasgupta;D. Pati;Anuj Srivastava
  • 通讯作者:
    Anuj Srivastava
Chapter 9 - Image Analysis and Recognition
第9章-图像分析与识别
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Srivastava
  • 通讯作者:
    Anuj Srivastava

Anuj Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Srivastava', 18)}}的其他基金

CDS&E: Geometrical Regression Models Involving Complex Shape Variables
CDS
  • 批准号:
    1953087
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    1955154
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Workshop on Applications-Driven Geometric Functional Data Analysis
应用驱动的几何函数数据分析研讨会
  • 批准号:
    1710802
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
  • 批准号:
    1617397
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
  • 批准号:
    1319658
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Ontology based Perceptual Organization of Audio-Video Events using Pattern Theory
RI:小型:协作研究:使用模式理论对音频-视频事件进行基于本体的感知组织
  • 批准号:
    1217515
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
A New Paradigm in Joint Registration, Analysis and Modeling of Function Data
函数数据联合配准、分析和建模的新范式
  • 批准号:
    1208959
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
MCS: Research on Detection and Classification of 2D and 3D Shapes in Cluttered Point Clouds
MCS:杂乱点云中 2D 和 3D 形状的检测和分类研究
  • 批准号:
    0915003
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Development of Geometrical and Statistical Models for Automated Object Recognition
FRG:自动对象识别的几何和统计模型的开发
  • 批准号:
    0101429
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
  • 批准号:
    2414575
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
  • 批准号:
    2415059
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
  • 批准号:
    2330737
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了