Theory and Application of Computation in Statistical Physics
统计物理计算理论与应用
基本信息
- 批准号:0242402
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2006-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broad theme of this award is to understand complex systems in statistical physics using a combination of computational and theoretical tools. The research has three related components: the random field Ising model; the development of new algorithms; and, the analysis of physical systems from the standpoint of computational complexity.Informed by new hypotheses and recent results, the phase transition of the random field Ising model will be studied using a replica exchange, i.e., parallel tempering, algorithm, a push-relabel algorithm, to find ground states, and real-space renormalization group techniques. The objective is to understand the nature of phase transition and particularly the singularities in the specific heat. Phase transitions in long-ranged correlated pore spaces, e.g., aerogels, will be considered. This work will potentially answer some long-standing theoretical questions concerning phase transitions in the presence of quenched disorder. The random field Ising model is believed to describe the phase transitions in fluids absorbed in porous materials and the results of this research should impact chemical physics and chemical engineering. In order to advance computational studies of spin systems, research is planned on the development and analysis of algorithms with an emphasis on replica exchange and cluster methods. Replica exchange methods are among the most powerful tools available for studying complex systems with competing interactions. Developing this class of algorithms has an importance that goes beyond the present study and may be relevant to problems ranging from protein folding to combinatorial optimization. In addition to providing algorithmic support for the random field Ising model study, one goal of this research is to develop cluster algorithms for dynamical problems.The third topic is a study of the parallel computational complexity of simulating systems in statistical physics. Efficient parallel algorithms will be constructed and analyzed for various systems including diffusion limited aggregation and growing networks. Based on insights gained from examining various models, general results will be sought relating structural properties and parallel computational complexity. For example, it is conjectured that, under relatively unrestrictive conditions, the absence of long-range correlations implies the existence of a fast parallel sampling algorithm. Investigations at the interface of theoretical computer science and statistical physics have the potential for yielding profound insights in both fields. Computational complexity provides a robust, formal way to measure history dependence in statistical physics and will sharpen our understanding of how and why physically complex systems sometimes emerge from simple rules and randomness.Besides the usual broader impacts associated with the research, this project will involve undergraduate physics students in computer simulations, especially in the third topical area. %%%The broad theme of this award is to understand complex systems in statistical physics using a combination of computational and theoretical tools. The research has three related components: the random field Ising model; the development of new algorithms; and, the analysis of physical systems from the standpoint of computational complexity.What is particularly interesting about this research program is that the work is at the interface between statistical physics and theoretical computer science. There have been a number of recent examples where statistical physics has contributed to computer science. This research will continue to focus on this fertile interface. Students working on these projects will be well positioned to contribute to both condensed matter physics and computational science.***
该奖项的主要主题是利用计算和理论工具的结合来理解统计物理中的复杂系统。该研究有三个相关组成部分:随机场Ising模型;新算法的开发;从计算复杂性的角度分析物理系统。根据新的假设和最近的结果,将使用副本交换,即并行回火,算法,推-重新标记算法,寻找基态和实空间重整化群技术来研究随机场Ising模型的相变。目的是了解相变的性质,特别是比热的奇点。将考虑长期相关孔隙空间(例如气凝胶)中的相变。这项工作将有可能回答一些长期存在的理论问题,有关相变在淬火无序的存在。随机场Ising模型被认为可以描述多孔材料中吸收的流体的相变,本研究的结果将对化学物理和化学工程产生影响。为了推进自旋系统的计算研究,计划对算法的开发和分析进行研究,重点是副本交换和聚类方法。副本交换方法是研究具有相互竞争作用的复杂系统的最强大的工具之一。开发这类算法具有超越当前研究的重要性,并且可能与从蛋白质折叠到组合优化等问题相关。除了为随机场Ising模型研究提供算法支持外,本研究的一个目标是开发动态问题的聚类算法。第三个主题是统计物理中模拟系统并行计算复杂性的研究。本文将构建并分析各种系统的高效并行算法,包括扩散有限聚合和增长网络。基于从检查各种模型中获得的见解,将寻求与结构特性和并行计算复杂性相关的一般结果。例如,据推测,在相对不受限制的条件下,不存在远程相关性意味着存在快速并行采样算法。在理论计算机科学和统计物理学的界面上进行的研究有可能在这两个领域产生深刻的见解。计算复杂性提供了一种健壮的、正式的方法来测量统计物理学中的历史依赖性,并将增强我们对物理复杂系统有时如何以及为什么从简单规则和随机性中出现的理解。除了通常与研究相关的更广泛的影响外,该项目将涉及计算机模拟的本科物理学生,特别是在第三主题领域。该奖项的主要主题是利用计算和理论工具的结合来理解统计物理学中的复杂系统。该研究有三个相关组成部分:随机场Ising模型;新算法的开发;从计算复杂性的角度分析物理系统。这个研究项目特别有趣的地方在于,它是统计物理学和理论计算机科学的结合。最近有很多统计物理学对计算机科学做出贡献的例子。这项研究将继续关注这个肥沃的界面。从事这些项目的学生将很好地为凝聚态物理和计算科学做出贡献
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Machta其他文献
Superfluid films in porous media.
多孔介质中的超流膜。
- DOI:
10.1103/physrevlett.60.2054 - 发表时间:
1988 - 期刊:
- 影响因子:8.6
- 作者:
Jonathan Machta;R. Guyer - 通讯作者:
R. Guyer
Optimal schedules for annealing algorithms
退火算法的最佳时间表
- DOI:
10.1103/physreve.109.065301 - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Amin Barzegar;Firasamine Hamze;C. Amey;Jonathan Machta - 通讯作者:
Jonathan Machta
Graphical Representations for Ising Systems in External Fields
外部场中 Ising 系统的图形表示
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
L. Chayes;Jonathan Machta;Oliver Redner - 通讯作者:
Oliver Redner
Invaded cluster simulations of the XY model in two and three dimensions.
二维和三维 XY 模型的入侵集群模拟。
- DOI:
10.1103/physreve.65.026702 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
I. Dukovski;Jonathan Machta;L. Chayes - 通讯作者:
L. Chayes
Jonathan Machta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Machta', 18)}}的其他基金
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325077 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Computational Studies of Disordered Systems in Statistical Physics
统计物理中无序系统的计算研究
- 批准号:
1507506 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Computational Studies of Complex and Frustrated Systems
复杂和受挫系统的计算研究
- 批准号:
1208046 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Computational Studies of Complex and Disordered Systems
复杂无序系统的计算研究
- 批准号:
0907235 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Theory and Application of Computation in Statistical Physics
统计物理计算理论与应用
- 批准号:
9978233 - 财政年份:1999
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Statistical Physics of Complex and Disordered Systems
复杂无序系统的统计物理
- 批准号:
9632898 - 财政年份:1996
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Statistical Physics of Complex and Disordered Systems
复杂无序系统的统计物理
- 批准号:
9311580 - 财政年份:1993
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Statistical Mechanics and Dynamics of Disordered Systems
无序系统的统计力学和动力学
- 批准号:
9014366 - 财政年份:1990
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Diffusion in Stationary Random Media (Materials Research)
固定随机介质中的扩散(材料研究)
- 批准号:
8317442 - 财政年份:1984
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Application-Aware Trustworthy Quantum Routing Framework with In-Network Computation
具有网内计算功能的应用感知可信量子路由框架
- 批准号:
23K28070 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
- 批准号:
2231863 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Application-Aware Trustworthy Quantum Routing Framework with In-Network Computation
具有网内计算功能的应用感知可信量子路由框架
- 批准号:
23H03380 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Morphological Computation for Resilient Dynamic Locomotion of Compliant Legged Robots with Application to Precision Agriculture
职业:顺应腿式机器人弹性动态运动的形态计算及其在精准农业中的应用
- 批准号:
2046270 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Research on Spin Wave interference device for Quantum computation application
量子计算应用的自旋波干涉装置研究
- 批准号:
21J12725 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Development of a method to form hollow silicon spheres, with application to photovoltaic cells: experiment and computation.
开发一种形成空心硅球的方法,并将其应用于光伏电池:实验和计算。
- 批准号:
20K04293 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on efficient secret sharing method that can generate countably infinite number of shares and its application to secure Computation
可生成可数无限个共享的高效秘密共享方法及其在安全计算中的应用研究
- 批准号:
20K11819 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application of Robust Motion Planning Platform of Robots with Symbolic-Numeric Computation
符号数值计算机器人鲁棒运动规划平台的开发与应用
- 批准号:
20K11845 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proposal and application of a useful bifurcation point detection method for various systems using evolutionary computation optimization methods
使用进化计算优化方法对各种系统有用的分叉点检测方法的提出和应用
- 批准号:
19K12138 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)