Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application

变阶分数阶偏微分方程:计算、分析与应用

基本信息

  • 批准号:
    2012291
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Mathematical modeling and simulation techniques have been widely used in science, engineering, and industry. In this project, we consider a class of models of complex phenomena which exhibit memory effects and long range interactions, with applications in design and manufacturing of visco-elastic materials, anomalous diffusive transport, hydrofracking in gas and oil recovery, bioclogging of porous materials, and the deformation of some materials such as in orthopedic implants and shape memory polymers. The focus is on fractional calculus and specifically on variable order fractional partial differential equations, in which the fractional order may be a function of space, time and even unknown solutions. The research activities will contribute to the analysis, simulation, modeling and application of fractional calculus, and provide advanced interdisciplinary training to students. The project includes training opportunities for graduate students. Fractional partial differential equations (FPDEs), which are characterized by power-law decaying tails, have shown to accurately model complex phenomena of nonlocal nature. However, rigorous mathematical and numerical analysis of variable-order FPDEs is currently less known than that for integer-order PDEs. For instance, it is well known that linear elliptic and parabolic FPDEs imposed on smooth domains with smooth data exhibit weak initial or boundary singularity, which is in sharp contrast to their integer-order analogues. This makes it unrealistic to carry out error estimates of numerical approximations to FPDEs based on the (often untrue) smoothness assumptions of their true solutions. In this project the investigators develop accurate and stable numerical approximations to variable-order FPDEs and their fast solution algorithms, as well as prove their well-posedness and smoothing properties. The investigators will also prove optimal-order error estimates of numerical approximations to variable-order FPDEs without any artificial regularity assumption of their true solutions, but only under the regularity assumptions of their coefficients, variable orders and other related data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学建模和仿真技术在科学、工程和工业中得到了广泛的应用。在这个项目中,我们考虑了一类具有记忆效应和长程相互作用的复杂现象模型,这些模型在粘弹性材料的设计和制造、异常扩散传输、油气开采中的水力压裂、多孔材料的生物记录以及某些材料的变形(如在骨科植入物和形状记忆聚合物中)中都有应用。重点是分数阶微积分,特别是变阶分数阶偏微分方程组,其中分数阶可以是空间、时间甚至未知解的函数。研究活动将有助于分数阶微积分的分析、模拟、建模和应用,并为学生提供高级跨学科培训。该项目包括为研究生提供培训机会。分数阶偏微分方程(FPDE)具有幂衰减尾部的特点,能够准确地模拟非局部性质的复杂现象。然而,目前对变阶偏微分方程组的严格数学和数值分析不如对整数阶偏微分方程组的严格数学和数值分析。例如,众所周知,施加在光滑数据的光滑区域上的线性椭圆型和抛物型FPDE具有弱的初始或边界奇异性,这与它们的整数阶类似物形成了鲜明的对比。这使得基于其真实解的光滑性假设对FPDE进行数值逼近的误差估计是不现实的。在这个项目中,研究人员发展了变阶FPDE的精确和稳定的数值逼近及其快速求解算法,并证明了它们的适定性和光滑性。调查人员还将证明变阶FPDE的数值逼近的最优阶误差估计,而不需要对其真实解进行任何人为的正则性假设,但仅在其系数、变量阶数和其他相关数据的正则性假设下。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A time-fractional diffusion equation with space-time dependent hidden-memory variable order: analysis and approximation
  • DOI:
    10.1007/s10543-021-00861-4
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xiangcheng Zheng;Hong Wang
  • 通讯作者:
    Xiangcheng Zheng;Hong Wang
Analysis of a time-fractional substantial diffusion equation of variable order
变阶时间分数实质扩散方程的分析
  • DOI:
    10.3390/fractalfract60201
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zheng, Xiangcheng;Wang, Hong;Guo, Xu
  • 通讯作者:
    Guo, Xu
An Error Estimate of a Modified Method of Characteristics Modeling Advective-Diffusive Transport in Randomly Heterogeneous Porous Media
随机异质多孔介质中平流扩散传输特征模型修正方法的误差估计
Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order
  • DOI:
    10.1007/s11071-021-06353-y
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Xiangcheng Zheng;Hong Wang
  • 通讯作者:
    Xiangcheng Zheng;Hong Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Wang其他文献

HippocampusSubunit Expression in the Mouse Calcium Current Amplitude and Affect Calcium Glucocorticoids Specifically Enhance L-Type
小鼠海马亚基表达钙电流幅度并影响钙糖皮质激素特异性增强 L 型
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjun Qin;S. Spijker;G. Smit;M. Joëls;Y. Yatomi;T. Fujita;Fumiko Kawakami;T. Shimosawa;S. Mu;Hong Wang;S. Ogura;R. Sarabdjitsingh;H. Karst
  • 通讯作者:
    H. Karst
LTD and LTP induced by transcranial magnetic stimulation in auditory cortex
听觉皮层经颅磁刺激诱导的LTD和LTP
  • DOI:
    10.1097/00001756-199601310-00035
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hong Wang;Xu Wang;H. Scheich
  • 通讯作者:
    H. Scheich
On the Data-Driven Materials Innovation Infrastructure
论数据驱动的材料创新基础设施
  • DOI:
    10.1016/j.eng.2020.04.004
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong Wang;X. Xiang;Lanting Zhang
  • 通讯作者:
    Lanting Zhang
Research on circuits detection system based on reverse simulation
基于逆向仿真的电路检测系统研究
The internal strain effect on Tc in the YBaAlCu oxide superconductor
YBaAlCu氧化物超导体中内应变对Tc的影响
  • DOI:
    10.1002/pssa.2211090132
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuhuan Xu;Zhongrong Li;Chaorui Li;Xianduan Lin;Wu Li;Wanming Lao;Hong Wang;Guowei Chen
  • 通讯作者:
    Guowei Chen

Hong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Wang', 18)}}的其他基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
  • 批准号:
    1954422
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
  • 批准号:
    2000988
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
  • 批准号:
    1664708
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
  • 批准号:
    1620194
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
  • 批准号:
    1216923
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
  • 批准号:
    2423124
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
  • 批准号:
    23K03749
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
STTR Phase I: Feasibility Study of a Reduced Order Model for Calculating Fractional Flow Reserve (FFR) Using Angiographic Data
STTR 第一阶段:使用血管造影数据计算血流储备分数 (FFR) 的降阶模型的可行性研究
  • 批准号:
    2151555
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SBIR Phase I: A fractional-order computational platform for the multiscale and multiphysics analysis of failure-critical systems
SBIR 第一阶段:用于故障关键系统的多尺度和多物理场分析的分数阶计算平台
  • 批准号:
    2212932
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
  • 批准号:
    2126190
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
IRES Site: Fractional-Order Circuits and Systems Research Collaboration with EU COST Action
IRES 网站:分数阶电路和系统研究与 EU COST Action 的合作
  • 批准号:
    1951552
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了