Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application

变阶分数阶偏微分方程:计算、分析与应用

基本信息

  • 批准号:
    2012291
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Mathematical modeling and simulation techniques have been widely used in science, engineering, and industry. In this project, we consider a class of models of complex phenomena which exhibit memory effects and long range interactions, with applications in design and manufacturing of visco-elastic materials, anomalous diffusive transport, hydrofracking in gas and oil recovery, bioclogging of porous materials, and the deformation of some materials such as in orthopedic implants and shape memory polymers. The focus is on fractional calculus and specifically on variable order fractional partial differential equations, in which the fractional order may be a function of space, time and even unknown solutions. The research activities will contribute to the analysis, simulation, modeling and application of fractional calculus, and provide advanced interdisciplinary training to students. The project includes training opportunities for graduate students. Fractional partial differential equations (FPDEs), which are characterized by power-law decaying tails, have shown to accurately model complex phenomena of nonlocal nature. However, rigorous mathematical and numerical analysis of variable-order FPDEs is currently less known than that for integer-order PDEs. For instance, it is well known that linear elliptic and parabolic FPDEs imposed on smooth domains with smooth data exhibit weak initial or boundary singularity, which is in sharp contrast to their integer-order analogues. This makes it unrealistic to carry out error estimates of numerical approximations to FPDEs based on the (often untrue) smoothness assumptions of their true solutions. In this project the investigators develop accurate and stable numerical approximations to variable-order FPDEs and their fast solution algorithms, as well as prove their well-posedness and smoothing properties. The investigators will also prove optimal-order error estimates of numerical approximations to variable-order FPDEs without any artificial regularity assumption of their true solutions, but only under the regularity assumptions of their coefficients, variable orders and other related data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学建模和仿真技术在科学、工程和工业中得到了广泛的应用。在这个项目中,我们考虑了一类表现出记忆效应和长程相互作用的复杂现象模型,其应用于粘弹性材料的设计和制造,异常扩散输运,油气开采中的水力压裂,多孔材料的生物堵塞,以及某些材料的变形,如骨科植入物和形状记忆聚合物。重点是分数阶微积分,特别是变阶分数阶偏微分方程,其中分数阶可能是空间,时间甚至未知解的函数。研究活动将有助于分数阶微积分的分析,模拟,建模和应用,并为学生提供先进的跨学科培训。该项目包括为研究生提供培训机会。分数阶偏微分方程(FPDE),其特点是幂律衰减的尾巴,已被证明可以准确地模拟复杂的非局部现象。然而,严格的数学和数值分析的可变阶的有限差分方程是目前已知的比整数阶偏微分方程。例如,众所周知,线性椭圆和抛物型有限差分方程施加在光滑区域与光滑数据表现出弱的初始或边界奇异性,这是在其整数阶类似物形成鲜明对比。这使得它不切实际的进行误差估计的数值逼近的FPDE的基础上(往往是不真实的)光滑性假设的真实解决方案。在这个项目中,研究人员开发了变阶FPDE的精确和稳定的数值近似及其快速求解算法,并证明了它们的适定性和平滑特性。研究人员还将证明变阶FPDE数值近似的最优阶误差估计,而不需要对其真实解进行任何人为的正则性假设,而只需要对其系数、变阶和其他相关数据进行正则性假设。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A time-fractional diffusion equation with space-time dependent hidden-memory variable order: analysis and approximation
  • DOI:
    10.1007/s10543-021-00861-4
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xiangcheng Zheng;Hong Wang
  • 通讯作者:
    Xiangcheng Zheng;Hong Wang
Analysis of a time-fractional substantial diffusion equation of variable order
变阶时间分数实质扩散方程的分析
  • DOI:
    10.3390/fractalfract60201
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zheng, Xiangcheng;Wang, Hong;Guo, Xu
  • 通讯作者:
    Guo, Xu
An Error Estimate of a Modified Method of Characteristics Modeling Advective-Diffusive Transport in Randomly Heterogeneous Porous Media
随机异质多孔介质中平流扩散传输特征模型修正方法的误差估计
Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order
  • DOI:
    10.1007/s11071-021-06353-y
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Xiangcheng Zheng;Hong Wang
  • 通讯作者:
    Xiangcheng Zheng;Hong Wang
Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Wang其他文献

Uplink Performance Analysis in Multi-tier Heterogeneous Cellular Networks with Power Control and Biased User Association
具有功率控制和偏置用户关联的多层异构蜂窝网络中的上行链路性能分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Han Hu;Hong Wang;Qi Zhu;Ziyu Pan
  • 通讯作者:
    Ziyu Pan
On STAR-RIS-Aided NOMA With Multi-Group Detection
具有多组检测的 STAR-RIS 辅助 NOMA
  • DOI:
    10.1109/lwc.2023.3303414
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Shen Fu;Hong Wang;Haitao Zhao;Haochun Ma
  • 通讯作者:
    Haochun Ma
Control of networked traffic flow distribution: a stochastic distribution system perspective
网络流量分配的控制:随机分配系统的角度
Composite robust H1 control for uncertain stochastic nonlinear systems with state delay via disturbance observer
基于扰动观测器的状态延迟不确定随机非线性系统的复合鲁棒H1控制
A Novel Optical See-Through Head-Mounted Display with Occlusion and Intensity Matching Support
具有遮挡和强度匹配支持的新型光学透视头戴式显示器

Hong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Wang', 18)}}的其他基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
  • 批准号:
    1954422
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
  • 批准号:
    2000988
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
  • 批准号:
    1664708
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
  • 批准号:
    1620194
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
  • 批准号:
    1216923
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
  • 批准号:
    2423124
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development from PID Control to FOPID Control by Establishing Fractional-Order Control Method
通过建立分数阶控制方法从PID控制发展到FOPID控制
  • 批准号:
    23K03749
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
STTR Phase I: Feasibility Study of a Reduced Order Model for Calculating Fractional Flow Reserve (FFR) Using Angiographic Data
STTR 第一阶段:使用血管造影数据计算血流储备分数 (FFR) 的降阶模型的可行性研究
  • 批准号:
    2151555
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SBIR Phase I: A fractional-order computational platform for the multiscale and multiphysics analysis of failure-critical systems
SBIR 第一阶段:用于故障关键系统的多尺度和多物理场分析的分数阶计算平台
  • 批准号:
    2212932
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Tuning the Frequency Response of Fractional-Order Microsupercapacitors
调整分数阶微型超级电容器的频率响应
  • 批准号:
    2126190
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Design of Analog Linear Circuits, Fractional Order Systems and Bioimpedance Measurements Techniques
模拟线性电路、分数阶系统和生物阻抗测量技术的设计
  • 批准号:
    RGPIN-2019-03911
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
IRES Site: Fractional-Order Circuits and Systems Research Collaboration with EU COST Action
IRES 网站:分数阶电路和系统研究与 EU COST Action 的合作
  • 批准号:
    1951552
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了