Statistical Physics of Complex and Disordered Systems
复杂无序系统的统计物理
基本信息
- 批准号:9311580
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-15 至 1996-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9311580 Machta This proposal concerns the statistical physics of complex and disordered systems. In particular it concentrates on three areas. 1) A theory of phase transitions in porous media with wide distributions of pore sizes is being developed using Migdal- Kadanoff approximations. The PI is particularly interested in studying the 4helium superfluid transition in porous aerogel glasses. 2) The PI proposes to study a clean example of self- organized criticality - that of the lambda transition in 4helium in the presence of heat flow. 3) The PI plans to study the application of computational complexity theory (something which arose out of theoretical computer science) to problems in statistical physics by determining the time requirements (and therefore the algorithmic choice) to solve various models on parallel machines. %%% The proposed work involves theoretical and computational approaches to the understanding of phase transitions in disordered systems. Of particular interest is the understanding of how helium undergoes its superfuid transition in a porous medium - the long wavelength fluctuations which are usually present in such transitions are truncated by the presence of the pore cages. Another aspect of this work concerns the study of a metastable system; that of the so- called lambda-transition in helium in the presence of heat flow. This produces a clean example for the study of self-organized criticality - a concept which has been applied to phenomena as varied as stock-market pricing and earth-quake prediction. Lastly, the proposal attempts to classify various models for phase transitions according ideas that came out of theoretical computer science - ideas that concern how difficult, computationally, it is to solve these models. ***
[311580]这个建议涉及复杂和无序系统的统计物理。它特别集中在三个方面。1)采用Migdal- Kadanoff近似建立了具有宽孔径分布的多孔介质相变理论。PI特别感兴趣的是研究多孔气凝胶玻璃中的4氦超流体转变。2) PI提出研究一个清晰的自组织临界的例子——存在热流的4氦中的λ跃迁。3) PI计划通过确定在并行机器上解决各种模型的时间要求(以及算法选择)来研究计算复杂性理论(源于理论计算机科学)在统计物理问题中的应用。提出的工作涉及理论和计算方法来理解无序系统中的相变。特别令人感兴趣的是对氦在多孔介质中如何经历其超流体转变的理解——通常在这种转变中存在的长波波动被孔笼的存在截断了。这项工作的另一个方面涉及亚稳态系统的研究;在有热流存在的情况下,氦的所谓λ跃迁。这为研究自组织临界性提供了一个清晰的例子——自组织临界性这个概念已被应用于各种现象,如股票市场定价和地震预测。最后,该提案试图根据来自理论计算机科学的思想对相变的各种模型进行分类——这些思想涉及解决这些模型的计算困难程度。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Machta其他文献
Superfluid films in porous media.
多孔介质中的超流膜。
- DOI:
10.1103/physrevlett.60.2054 - 发表时间:
1988 - 期刊:
- 影响因子:8.6
- 作者:
Jonathan Machta;R. Guyer - 通讯作者:
R. Guyer
Optimal schedules for annealing algorithms
退火算法的最佳时间表
- DOI:
10.1103/physreve.109.065301 - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Amin Barzegar;Firasamine Hamze;C. Amey;Jonathan Machta - 通讯作者:
Jonathan Machta
Graphical Representations for Ising Systems in External Fields
外部场中 Ising 系统的图形表示
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
L. Chayes;Jonathan Machta;Oliver Redner - 通讯作者:
Oliver Redner
Invaded cluster simulations of the XY model in two and three dimensions.
二维和三维 XY 模型的入侵集群模拟。
- DOI:
10.1103/physreve.65.026702 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
I. Dukovski;Jonathan Machta;L. Chayes - 通讯作者:
L. Chayes
Jonathan Machta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Machta', 18)}}的其他基金
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325077 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Computational Studies of Disordered Systems in Statistical Physics
统计物理中无序系统的计算研究
- 批准号:
1507506 - 财政年份:2015
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Computational Studies of Complex and Frustrated Systems
复杂和受挫系统的计算研究
- 批准号:
1208046 - 财政年份:2012
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Computational Studies of Complex and Disordered Systems
复杂无序系统的计算研究
- 批准号:
0907235 - 财政年份:2009
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Theory and Application of Computation in Statistical Physics
统计物理计算理论与应用
- 批准号:
0242402 - 财政年份:2003
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Theory and Application of Computation in Statistical Physics
统计物理计算理论与应用
- 批准号:
9978233 - 财政年份:1999
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Statistical Physics of Complex and Disordered Systems
复杂无序系统的统计物理
- 批准号:
9632898 - 财政年份:1996
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Statistical Mechanics and Dynamics of Disordered Systems
无序系统的统计力学和动力学
- 批准号:
9014366 - 财政年份:1990
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Diffusion in Stationary Random Media (Materials Research)
固定随机介质中的扩散(材料研究)
- 批准号:
8317442 - 财政年份:1984
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Real-time simulation of unprecedented complex disasters through data science embedded with empirical knowledge of physics
通过嵌入物理学经验知识的数据科学实时模拟前所未有的复杂灾难
- 批准号:
23H01662 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inertial Fusion Energy: Optimising High Energy Density Physics in Complex Geometries
惯性聚变能:优化复杂几何形状中的高能量密度物理
- 批准号:
EP/X025373/1 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Physics of complex systems: emergent properties, criticality and dynamical networks
复杂系统物理学:涌现属性、临界性和动态网络
- 批准号:
RGPIN-2020-05221 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
A physics-consistent data-driven paradigm for designing complex material systems
用于设计复杂材料系统的物理一致的数据驱动范例
- 批准号:
RGPIN-2021-02561 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
Mesoscopic Wave Physics of Heterogeneous Complex Materials
异质复杂材料的介观波物理
- 批准号:
RGPIN-2022-04130 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
Development of the apparatus for measuring electric and magnetic properties of iron-based superconductors under complex extreme conditions and its application to the BCS-BEC crossover physics
复杂极端条件下铁基超导体电磁性能测量装置研制及其在BCS-BEC交叉物理中的应用
- 批准号:
22K03511 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMREF: Physics-Informed Meta-Learning for Design of Complex Materials
DMREF:用于复杂材料设计的物理信息元学习
- 批准号:
2203580 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
- 批准号:
RGPIN-2021-02600 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Grants Program - Individual
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant