Collaborative Research FRG: Phase Transitions in Stochastics Dynamics and Algorithms
合作研究 FRG:随机动力学和算法中的相变
基本信息
- 批准号:0244323
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0244323Dembo Stochastic dynamics for spin systems have been investigated for decades by physicists as a means for simulating Gibbs measures. In the last decade, computer scientists and probabilists have brought new perspectives and methods to this study and showed its applicability to approximately uniform sampling, and approximate counting of combinatorial structures. The key factor controlling the running time of such sampling schemes is the mixing time of the dynamics, which can change dramatically when the underlying stationary measure undergoes a phase transition. A central aim of this FRG project is to explore systematically the connections between information theory, large deviations, and mixing times for Markov chains. Certain fundamental optimization and search problems (e.g., k-satisfiability with random clauses) exhibit a radical change as the ratio between the input size and the number of unknown parameters is tuned. Understanding these thresholds quantitatively is another focus of the project. A system undergoes a "phase transition" when a small change in its input has a profound, qualitative effect on its behavior. Examples of phase transitions have been studied for decades in physics; more recently, this notion has become important in other areas, notably in connection with the performance of search and optimization techniques. Further progress on the hard problems of the subject requires long-term cooperation of researchers in probability and algorithms, as well as consultation with experts in the adjoining areas of combinatorics and statistical physics. The project is expected to have an impact on the design and analysis of randomized algorithms and provide insight on key scheduling and optimization problems. Significant effects on graduate training of students in discrete probability and computer science are expected, as they learn the language and tools of the different disciplines involved.
几十年来,物理学家一直在研究自旋系统的Dembo随机动力学,以此作为模拟Gibbs测量的一种手段。在过去的十年里,计算机科学家和概率学家为这项研究带来了新的视角和方法,并展示了它对组合结构的近似均匀抽样和近似计数的适用性。控制这种采样方案运行时间的关键因素是动力学的混合时间,当潜在的静态测量经历相变时,动力学的混合时间可以发生巨大的变化。这个FRG项目的一个中心目标是系统地探索信息理论、大偏差和马尔可夫链混合时间之间的联系。某些基本的优化和搜索问题(例如,具有随机子句的k-可满足性)随着输入大小和未知参数的数量之间的比率被调整而表现出根本的变化。定量地了解这些门槛是该项目的另一个重点。当输入的微小变化对系统的行为产生深刻的、定性的影响时,系统就经历了“相变”。相变的例子在物理学中已经研究了几十年;最近,这个概念在其他领域变得重要起来,特别是在搜索和优化技术的性能方面。在这个课题的难题上取得进一步进展需要概率和算法方面的研究人员的长期合作,以及与组合数学和统计物理相关领域的专家的咨询。该项目预计将对随机化算法的设计和分析产生影响,并对关键的调度和优化问题提供见解。随着学生学习不同学科的语言和工具,离散概率和计算机科学的研究生培训预计将产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Dembo其他文献
Fragmentation of the accretion disk around Pop III stars
Pop III 恒星周围吸积盘的碎片
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota;Hajime Susa - 通讯作者:
Hajime Susa
Slowdown estimates for one-dimensional random walks in random environment with holding times
具有保持时间的随机环境中一维随机游走的减速估计
- DOI:
10.1214/18-ecp191 - 发表时间:
2018 - 期刊:
- 影响因子:0.5
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota - 通讯作者:
Naoki Kubota
Simple random covering , disconnection , late and favorite points
简单随机覆盖、断线、迟到和收藏点
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo - 通讯作者:
Amir Dembo
On the disconnection of a discrete cylinder by a random walk
- DOI:
10.1007/s00440-005-0485-9 - 发表时间:
2005-12-29 - 期刊:
- 影响因子:1.600
- 作者:
Amir Dembo;Alain-Sol Sznitman - 通讯作者:
Alain-Sol Sznitman
Potts and random cluster measures on locally regular-tree-like graphs
局部正则树状图上的 Potts 和随机聚类度量
- DOI:
10.4230/lipics.approx/random.2022.24 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anirban Basak;Amir Dembo;Allan Sly - 通讯作者:
Allan Sly
Amir Dembo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Dembo', 18)}}的其他基金
Asymptotics in Probability: Walks and Graphs, Disordered Measures, and Dynamics
概率论渐进:游走和图、无序测度和动力学
- 批准号:
1954337 - 财政年份:2020
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Combinatorial Optimization, Spin Models, and the Geometry of Sparse Random Graphs
组合优化、自旋模型和稀疏随机图的几何形状
- 批准号:
1613091 - 财政年份:2016
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Mean Field Asymptotic for Stochastic Processes on Graphs
图上随机过程的平均场渐近
- 批准号:
1106627 - 财政年份:2011
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Seminar on Stochastic Processes 2009
2009年随机过程研讨会
- 批准号:
0844454 - 财政年份:2009
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Mean field asymptotic for stochastic processes on graphs
图上随机过程的平均场渐近
- 批准号:
0806211 - 财政年份:2008
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
- 批准号:
0406042 - 财政年份:2004
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
- 批准号:
0072331 - 财政年份:2000
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applications and Refinements of the Theory of Large Deviations
数学科学:大偏差理论的应用和完善
- 批准号:
9209712 - 财政年份:1992
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant