Quenched Tails and Almost Sure Limit Laws

淬火尾部和几乎确定的极限定律

基本信息

  • 批准号:
    0072331
  • 负责人:
  • 金额:
    $ 21.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

0072331Dembo This research is in the area of large deviations and its applications. In particular, the PI will study situations where the rare behavior conditioned on a fixed (= quenched) realization of one element of randomness is the key to determine and understand the typical phenomena. One unifying theme is that the evaluation of probabilities of rare events leads to an understanding of the mechanisms by which they can occur, and when many different rare events are possible, it leads to the identification of the mechanism causing one of them to actually occur. Two specific lines of research are planned: (i) Mathematical study and understanding of "aging" phenomenon in the large time behavior of dynamical systems for statistical physics models out of equilibrium; and (ii) Study of exceptional points on the sample path of stochastic processes such as Brownian motion, random walks and stable processes. Emphasis is put on points defined by means of the corresponding occupation measures of sets of shrinking diameters. Other directions of proposed research involving these ingredients are applicable among other things to universal lossy coding, a problem of relevance and much interest for communication theory and to biomolecular data analysis. The theory of large deviations is mainly concerned with rare events or tail estimates on an exponential scale. This theory has proven to be successful as a tool for deriving almost sure asymptotic limits when two levels of randomness are present. Of particular interest are problems in which large deviations estimates and ideas play a decisive role in determining a limit law that holds with probability one.
本研究是关于大偏差及其应用领域的研究。特别是,PI将研究这样的情况,即以一个随机元素的固定(=猝灭)实现为条件的罕见行为是确定和理解典型现象的关键。一个统一的主题是,对罕见事件概率的评估有助于理解它们发生的机制,当许多不同的罕见事件可能发生时,它导致确定导致其中一种事件实际发生的机制。计划进行两条具体的研究路线:(I)对失去平衡的统计物理模型的动力系统大时间行为中的“老化”现象进行数学研究和理解;(Ii)研究随机过程(如布朗运动、随机游动和稳定过程)样本路径上的例外点。重点讨论了由缩径集对应的占位度量定义的点。涉及这些成分的拟议研究的其他方向也适用于通用有损编码,这是一个与通信理论和生物分子数据分析相关且非常感兴趣的问题。大偏差理论主要涉及指数尺度上的罕见事件或尾部估计。这一理论已被证明是一种成功的工具,当存在两个随机性水平时,可以导出几乎确定的渐近极限。特别令人感兴趣的问题是,大偏差、估计和想法在确定以概率一成立的极限定律方面起着决定性作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Dembo其他文献

Fragmentation of the accretion disk around Pop III stars
Pop III 恒星周围吸积盘的碎片
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Dembo;Ryoki Fukushima;Naoki Kubota;Hajime Susa
  • 通讯作者:
    Hajime Susa
Slowdown estimates for one-dimensional random walks in random environment with holding times
具有保持时间的随机环境中一维随机游走的减速估计
Simple random covering , disconnection , late and favorite points
简单随机覆盖、断线、迟到和收藏点
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Dembo
  • 通讯作者:
    Amir Dembo
On the disconnection of a discrete cylinder by a random walk
  • DOI:
    10.1007/s00440-005-0485-9
  • 发表时间:
    2005-12-29
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Amir Dembo;Alain-Sol Sznitman
  • 通讯作者:
    Alain-Sol Sznitman
Potts and random cluster measures on locally regular-tree-like graphs
局部正则树状图上的 Potts 和随机聚类度量
  • DOI:
    10.4230/lipics.approx/random.2022.24
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirban Basak;Amir Dembo;Allan Sly
  • 通讯作者:
    Allan Sly

Amir Dembo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Dembo', 18)}}的其他基金

Asymptotics in Probability: Walks and Graphs, Disordered Measures, and Dynamics
概率论渐进:游走和图、无序测度和动力学
  • 批准号:
    1954337
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Combinatorial Optimization, Spin Models, and the Geometry of Sparse Random Graphs
组合优化、自旋模型和稀疏随机图的几何形状
  • 批准号:
    1613091
  • 财政年份:
    2016
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Mean Field Asymptotic for Stochastic Processes on Graphs
图上随机过程的平均场渐近
  • 批准号:
    1106627
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes 2009
2009年随机过程研讨会
  • 批准号:
    0844454
  • 财政年份:
    2009
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Mean field asymptotic for stochastic processes on graphs
图上随机过程的平均场渐近
  • 批准号:
    0806211
  • 财政年份:
    2008
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
  • 批准号:
    0406042
  • 财政年份:
    2004
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
Collaborative Research FRG: Phase Transitions in Stochastics Dynamics and Algorithms
合作研究 FRG:随机动力学和算法中的相变
  • 批准号:
    0244323
  • 财政年份:
    2003
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications and Refinements of the Theory of Large Deviations
数学科学:大偏差理论的应用和完善
  • 批准号:
    9209712
  • 财政年份:
    1992
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant

相似海外基金

Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
  • 批准号:
    24K19850
  • 财政年份:
    2024
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Many Influences on Comets' Tails
对彗尾的多种影响
  • 批准号:
    2881703
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Studentship
Collaborative Research: IOS:RUI: Hydrodynamic consequences of spines on zooplankton: Functional morphology of horns and tails on barnacle nauplii
合作研究:IOS:RUI:刺对浮游动物的水动力影响:藤壶无节幼体角和尾的功能形态
  • 批准号:
    2136018
  • 财政年份:
    2022
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
CAREER: Catastrophic Rare Events: Theory of Heavy Tails and Applications
职业:灾难性罕见事件:重尾理论及其应用
  • 批准号:
    2146530
  • 财政年份:
    2022
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Role of histone tails in gene expression and cellular functions
组蛋白尾在基因表达和细胞功能中的作用
  • 批准号:
    RGPIN-2018-06099
  • 财政年份:
    2022
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Transitions in the evolution of synapsid tails
合弓动物尾部进化的转变
  • 批准号:
    2696825
  • 财政年份:
    2022
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Studentship
Collaborative Research: IOS:RUI: Hydrodynamic consequences of spines on zooplankton: Functional morphology of horns and tails on barnacle nauplii
合作研究:IOS:RUI:刺对浮游动物的水动力影响:藤壶无节幼体角和尾的功能形态
  • 批准号:
    2136019
  • 财政年份:
    2022
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
The beginning and end of poly(A) tails
Poly(A) 尾部的开头和结尾
  • 批准号:
    BB/V000462/1
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Research Grant
N-terminomics/TAILS profiling of calpain-2 in macrophages
巨噬细胞中 calpain-2 的 N 末端组学/TAILS 分析
  • 批准号:
    563887-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Role of histone tails in gene expression and cellular functions
组蛋白尾在基因表达和细胞功能中的作用
  • 批准号:
    RGPIN-2018-06099
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了