Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
基本信息
- 批准号:0406042
- 负责人:
- 金额:$ 43.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0406042Dembo The evaluation of probabilities of rare events leads to an understanding of the mechanisms by which they can occur, and when many different rare events are possible, it identifies the mechanism causing one of them to actually occur. This approach has been very successful, often for finding the quenched asymptotic behavior when two levels of randomness are present, conditioned on a fixed, typical realization of one element of randomness. The proposed activity focuses on the applications of this approach in two directions:1. Experiments and simulations involving dynamical systems out of equilibrium report an aging phenomenon, that is "memory" being accumulated in the system. The fluctuation-dissipation theorem of statistical physics relates the time derivative of the correlation function at equilibrium to the effect of small perturbations in the dynamical equations. It is predicted in the physics literature that aging is related to a specific form of breakup of the fluctuation-dissipation theorem. One goal of the proposed activity is to form the mathematical version of the fluctuation-dissipation theorem, to understand the causes of the aging mechanism, and to rigorously relate the two.2. The Gaussian free field and the Brownian motion are two fundamental random objects of great intrinsic beauty and much interest in probability theory (as well as in mathematical physics). The PI and his collaborators have been very successful in studying the fractal geometry of the extremal points of the occupation measure and covering process associated with planar Brownian motion and random walks. Recent works by the PI's students, their collaborators, and others, suggest strong similarity between the extremes of the Gaussian free field and those of the Brownian motion, as well as novel relations between contour lines of random height functions, those of the Gaussian free field and certain conformally invariant loop ensembles. Pursuing further this similarity, one goal of the proposed activity is to gain new insights and develop novel connections between the planar Gaussian free field and Brownian motion. Over the past three decades, the physics community has developed sophisticated non-rigorous techniques for making very accurate predictions about the asymptotics of random dynamics, Gibbs measures, and planar objects with conformal symmetries. More recently, mathematicians started making significant progress in developing the corresponding rigorous theories and proving some of these predictions. One of the key tools in this process has been the theory of large deviations and the intuition behind it. The proposed activity is partially motivated by such non-rigorous physics predictions. As such, it is expected to result in new mathematical ideas and techniques that, beyond the immediate resolution of challenging problems of much interest to probabilists, would have an impact on the interface between probability theory and statistical physics. This grant will provide graduate training of students in probability theory. The techniques to be developed in this proposal are also expected to have future applications to the theory and practice of universal non-linear filtering, a problem of relevance and much interest for communication theory (see the URL www-stat.stanford.edu/~amir/ for some related activity and preprints).
0406042 Dembo评估罕见事件的概率有助于理解它们发生的机制,当许多不同的罕见事件可能发生时,它可以识别导致其中一个实际发生的机制。这种方法已经非常成功,通常用于发现当存在两个水平的随机性时的猝灭渐近行为,条件是一个随机性元素的固定的典型实现。拟议的活动侧重于在两个方向应用这一方法:1.实验和模拟涉及动力系统的平衡报告老化现象,即“记忆”正在积累的系统。统计物理学的涨落耗散定理将平衡时的相关函数的时间导数与动力学方程中小扰动的影响联系起来。物理学文献中预测,老化与涨落耗散定理的一种特定形式的破裂有关。该活动的一个目标是形成波动耗散定理的数学版本,了解衰老机制的原因,并将两者严格联系起来。高斯自由场和布朗运动是两个基本的随机对象,具有巨大的内在美,在概率论(以及数学物理)中非常有趣。PI和他的合作者已经非常成功地研究了分形几何的极值点的占领措施和覆盖过程与平面布朗运动和随机游动。PI的学生,他们的合作者和其他人最近的工作表明,高斯自由场的极端和布朗运动的极端之间有很强的相似性,以及随机高度函数的轮廓线之间的新关系,高斯自由场的轮廓线和某些共形不变的环系综。进一步追求这种相似性,所提出的活动的一个目标是获得新的见解,并开发平面高斯自由场和布朗运动之间的新联系。 在过去的三十年里,物理学界已经发展出了复杂的非严格技术,用于对随机动力学、吉布斯测度和具有共形对称性的平面物体的渐近性进行非常精确的预测。最近,数学家们开始在发展相应的严格理论和证明其中一些预测方面取得重大进展。这个过程中的关键工具之一是大偏差理论及其背后的直觉。拟议的活动部分是由这种非严格的物理预测所推动的。因此,它预计将导致新的数学思想和技术,除了立即解决概率学家非常感兴趣的挑战性问题外,还将对概率论和统计物理之间的界面产生影响。这笔赠款将为学生提供概率论的研究生培训。本提案中开发的技术也有望在未来应用于通用非线性滤波的理论和实践,这是一个相关的问题,对通信理论非常感兴趣(参见URL www-stat.stanford.edu/~amir/,了解一些相关活动和预印本)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Dembo其他文献
Fragmentation of the accretion disk around Pop III stars
Pop III 恒星周围吸积盘的碎片
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota;Hajime Susa - 通讯作者:
Hajime Susa
Slowdown estimates for one-dimensional random walks in random environment with holding times
具有保持时间的随机环境中一维随机游走的减速估计
- DOI:
10.1214/18-ecp191 - 发表时间:
2018 - 期刊:
- 影响因子:0.5
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota - 通讯作者:
Naoki Kubota
Simple random covering , disconnection , late and favorite points
简单随机覆盖、断线、迟到和收藏点
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo - 通讯作者:
Amir Dembo
On the disconnection of a discrete cylinder by a random walk
- DOI:
10.1007/s00440-005-0485-9 - 发表时间:
2005-12-29 - 期刊:
- 影响因子:1.600
- 作者:
Amir Dembo;Alain-Sol Sznitman - 通讯作者:
Alain-Sol Sznitman
Potts and random cluster measures on locally regular-tree-like graphs
局部正则树状图上的 Potts 和随机聚类度量
- DOI:
10.4230/lipics.approx/random.2022.24 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anirban Basak;Amir Dembo;Allan Sly - 通讯作者:
Allan Sly
Amir Dembo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Dembo', 18)}}的其他基金
Asymptotics in Probability: Walks and Graphs, Disordered Measures, and Dynamics
概率论渐进:游走和图、无序测度和动力学
- 批准号:
1954337 - 财政年份:2020
- 资助金额:
$ 43.86万 - 项目类别:
Continuing Grant
Combinatorial Optimization, Spin Models, and the Geometry of Sparse Random Graphs
组合优化、自旋模型和稀疏随机图的几何形状
- 批准号:
1613091 - 财政年份:2016
- 资助金额:
$ 43.86万 - 项目类别:
Continuing Grant
Mean Field Asymptotic for Stochastic Processes on Graphs
图上随机过程的平均场渐近
- 批准号:
1106627 - 财政年份:2011
- 资助金额:
$ 43.86万 - 项目类别:
Continuing Grant
Seminar on Stochastic Processes 2009
2009年随机过程研讨会
- 批准号:
0844454 - 财政年份:2009
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
Mean field asymptotic for stochastic processes on graphs
图上随机过程的平均场渐近
- 批准号:
0806211 - 财政年份:2008
- 资助金额:
$ 43.86万 - 项目类别:
Continuing Grant
Collaborative Research FRG: Phase Transitions in Stochastics Dynamics and Algorithms
合作研究 FRG:随机动力学和算法中的相变
- 批准号:
0244323 - 财政年份:2003
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
- 批准号:
0072331 - 财政年份:2000
- 资助金额:
$ 43.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applications and Refinements of the Theory of Large Deviations
数学科学:大偏差理论的应用和完善
- 批准号:
9209712 - 财政年份:1992
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
相似海外基金
Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
- 批准号:
24K19850 - 财政年份:2024
- 资助金额:
$ 43.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: IOS:RUI: Hydrodynamic consequences of spines on zooplankton: Functional morphology of horns and tails on barnacle nauplii
合作研究:IOS:RUI:刺对浮游动物的水动力影响:藤壶无节幼体角和尾的功能形态
- 批准号:
2136018 - 财政年份:2022
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
CAREER: Catastrophic Rare Events: Theory of Heavy Tails and Applications
职业:灾难性罕见事件:重尾理论及其应用
- 批准号:
2146530 - 财政年份:2022
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
Role of histone tails in gene expression and cellular functions
组蛋白尾在基因表达和细胞功能中的作用
- 批准号:
RGPIN-2018-06099 - 财政年份:2022
- 资助金额:
$ 43.86万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: IOS:RUI: Hydrodynamic consequences of spines on zooplankton: Functional morphology of horns and tails on barnacle nauplii
合作研究:IOS:RUI:刺对浮游动物的水动力影响:藤壶无节幼体角和尾的功能形态
- 批准号:
2136019 - 财政年份:2022
- 资助金额:
$ 43.86万 - 项目类别:
Standard Grant
Transitions in the evolution of synapsid tails
合弓动物尾部进化的转变
- 批准号:
2696825 - 财政年份:2022
- 资助金额:
$ 43.86万 - 项目类别:
Studentship
The beginning and end of poly(A) tails
Poly(A) 尾部的开头和结尾
- 批准号:
BB/V000462/1 - 财政年份:2021
- 资助金额:
$ 43.86万 - 项目类别:
Research Grant
N-terminomics/TAILS profiling of calpain-2 in macrophages
巨噬细胞中 calpain-2 的 N 末端组学/TAILS 分析
- 批准号:
563887-2021 - 财政年份:2021
- 资助金额:
$ 43.86万 - 项目类别:
University Undergraduate Student Research Awards
Role of histone tails in gene expression and cellular functions
组蛋白尾在基因表达和细胞功能中的作用
- 批准号:
RGPIN-2018-06099 - 财政年份:2021
- 资助金额:
$ 43.86万 - 项目类别:
Discovery Grants Program - Individual