Combinatorial Optimization, Spin Models, and the Geometry of Sparse Random Graphs
组合优化、自旋模型和稀疏随机图的几何形状
基本信息
- 批准号:1613091
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Networks and graphs are ubiquitous mathematical models to describe important systems (social networks, transportation networks, and biological systems, among others). A network is comprised of a certain number of objects (normally referred to as 'nodes' or 'vertices') connected by links of various importance ('edges' and their 'weights'). Analyzing network data is notoriously challenging. An important task is to group the vertices into subgroups such that each subgroup is highly connected, and any two subgroups have only loose interconnections. Even if one is only trying to identify merely two subgroups (known as the min-bisection problem), no efficient algorithm is known to partition the nodes of large graphs in general. The situation changes when one considers that the graphs might have a random structure. Indeed, for many reasonable probabilistic models on graphs, there appear to be efficient algorithms to solve the min-bisection problem. This project will develop our fundamental understanding of these probabilistic models and will study efficient algorithms to treat them.The project focuses on various models of sparse random graphs, the simplest being the Erdos-Renyi (independent edges) random graph, with bounded average degree. Many statistical inference tasks can be addressed by suitably defined combinatorial optimization problems. For instance, the min-bisection problem requires to find a balanced partition of the vertex set that minimizes the number of edges across the partition. These optimization problems are associated to certain Gibbs measures on the underlying graph, from which the optimizers are recovered as ground states. Statistical physicists conjectured that these Gibbs measures are asymptotically equivalent (for random graphs) to Gibbs measures of suitably defined spin glass models. This project aims at establishing this connection on a firm basis and exploiting it to study the structure of large random graphs. It has also recently been suggested that semidefinite-programming relaxations for the same problems can be studied through other Gibbs measures (with vector spins). Studying these spin models will improve our understanding of efficient algorithms for solving these tasks.
网络和图是描述重要系统(社会网络、交通网络和生物系统等)的普遍数学模型。网络由一定数量的对象(通常称为“节点”或“顶点”)组成,这些对象通过不同重要性的链接(“边”及其“权重”)相连。分析网络数据是出了名的挑战。一项重要的任务是将顶点分组为子组,使每个子组高度相连,而任何两个子组只有松散的互连。即使只试图识别两个子群(称为最小二等分问题),通常也没有有效的算法来划分大图的节点。当人们考虑到图可能具有随机结构时,情况就会改变。事实上,对于图上的许多合理的概率模型,似乎都有有效的算法来解决最小二分问题。这个项目将加深我们对这些概率模型的基本理解,并将研究处理它们的有效算法。该项目专注于稀疏随机图的各种模型,最简单的是具有有界平均度的Erdos-Renyi(独立边)随机图。许多统计推理任务可以通过适当定义的组合优化问题来解决。例如,最小二分问题需要找到顶点集的一个平衡划分,以最小化该划分上的边数。这些优化问题与基础图上的某些Gibbs度量相关联,从这些Gibbs度量中,优化器被恢复为基态。统计物理学家推测,这些Gibbs度量(对于随机图)与适当定义的自旋玻璃模型的Gibbs度量渐近等价。这个项目的目的是在坚实的基础上建立这种联系,并利用它来研究大型随机图的结构。最近也有人提出,同样问题的半定规划松弛可以通过其他吉布斯度量(带有向量自旋)来研究。研究这些自旋模型将提高我们对解决这些任务的有效算法的理解。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discussion of: “Nonparametric regression using deep neural networks with ReLU activation function”
- DOI:10.1214/19-aos1910
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:B. Ghorbani;Song Mei;Theodor Misiakiewicz;A. Montanari
- 通讯作者:B. Ghorbani;Song Mei;Theodor Misiakiewicz;A. Montanari
Dynamics for Spherical Spin Glasses: Disorder Dependent Initial Conditions
球形旋转玻璃的动力学:无序相关的初始条件
- DOI:10.1007/s10955-020-02587-z
- 发表时间:2020
- 期刊:
- 影响因子:1.6
- 作者:Dembo, Amir;Subag, Eliran
- 通讯作者:Subag, Eliran
On the Connection Between Learning Two-Layer Neural Networks and Tensor Decomposition
论学习两层神经网络与张量分解的联系
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Marco Mondelli, Andrea Montanari
- 通讯作者:Marco Mondelli, Andrea Montanari
How well do local algorithms solve semidefinite programs?
局部算法求解半定程序的效果如何?
- DOI:10.1145/3055399.3055451
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Fan, Zhou;Montanari, Andrea
- 通讯作者:Montanari, Andrea
State evolution for approximate message passing with non-separable functions
- DOI:10.1093/imaiai/iay021
- 发表时间:2020-03-01
- 期刊:
- 影响因子:1.6
- 作者:Berthier, Raphael;Montanari, Andrea;Phan-Minh Nguyen
- 通讯作者:Phan-Minh Nguyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Dembo其他文献
Fragmentation of the accretion disk around Pop III stars
Pop III 恒星周围吸积盘的碎片
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota;Hajime Susa - 通讯作者:
Hajime Susa
Slowdown estimates for one-dimensional random walks in random environment with holding times
具有保持时间的随机环境中一维随机游走的减速估计
- DOI:
10.1214/18-ecp191 - 发表时间:
2018 - 期刊:
- 影响因子:0.5
- 作者:
Amir Dembo;Ryoki Fukushima;Naoki Kubota - 通讯作者:
Naoki Kubota
Simple random covering , disconnection , late and favorite points
简单随机覆盖、断线、迟到和收藏点
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Amir Dembo - 通讯作者:
Amir Dembo
On the disconnection of a discrete cylinder by a random walk
- DOI:
10.1007/s00440-005-0485-9 - 发表时间:
2005-12-29 - 期刊:
- 影响因子:1.600
- 作者:
Amir Dembo;Alain-Sol Sznitman - 通讯作者:
Alain-Sol Sznitman
Potts and random cluster measures on locally regular-tree-like graphs
局部正则树状图上的 Potts 和随机聚类度量
- DOI:
10.4230/lipics.approx/random.2022.24 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Anirban Basak;Amir Dembo;Allan Sly - 通讯作者:
Allan Sly
Amir Dembo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Dembo', 18)}}的其他基金
Asymptotics in Probability: Walks and Graphs, Disordered Measures, and Dynamics
概率论渐进:游走和图、无序测度和动力学
- 批准号:
1954337 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mean Field Asymptotic for Stochastic Processes on Graphs
图上随机过程的平均场渐近
- 批准号:
1106627 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mean field asymptotic for stochastic processes on graphs
图上随机过程的平均场渐近
- 批准号:
0806211 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
- 批准号:
0406042 - 财政年份:2004
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research FRG: Phase Transitions in Stochastics Dynamics and Algorithms
合作研究 FRG:随机动力学和算法中的相变
- 批准号:
0244323 - 财政年份:2003
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Quenched Tails and Almost Sure Limit Laws
淬火尾部和几乎确定的极限定律
- 批准号:
0072331 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applications and Refinements of the Theory of Large Deviations
数学科学:大偏差理论的应用和完善
- 批准号:
9209712 - 财政年份:1992
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant