Banach Spaces and their Applications
Banach 空间及其应用
基本信息
- 批准号:0244515
- 负责人:
- 金额:$ 28.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractKaltonIn this proposal, the aim is to study a number of problemsrelated to Banach space theory and its applications. Partof the project deals with the theory of extensions of oneBanach space by another. For example it is planned to studythe problem of classifying those Banach spaces such thatevery minimal extension is trivial. This problem can bereformulated as a problem in approximation theory. It isalso planned to study applications to problems in thenonlinear theory of Banach spaces, related to problems ofexistence of uniform homeomorphisms between two Banachspaces or between their unit balls. In a somewhat differentdirection the proposer plans to continue his ongoingresearch on Rademacher-bounded families of operators withapplications to sectorial operators and semigroups.The theory of extensions can be considered in the followingterms. Suppose we are given a centrally symmetric solid inthree or more dimensions and we are allowed only to computeits cross-section by a slice in some directions and theshadow cast by the body in the perpendicular directions.This gives us some information about the solid, but does notpermit complete reconstruction. The idea of studyingextensions is to obtain more complete information about thebody under certain additional conditions. Many questions ofimportance in mathematical analysis and applications,although not formally expressed in this way, can bevisualized in terms of extensions. Sectorial operators areof importance in the basic theory of partial differentialequations of evolution type; such equations are veryimportant in physical applications. Typically a sectorialoperator is a differential operator acting on some suitablespace of functions. By understanding the properties ofsectorial operators and the semigroups they generate onegains a better understanding of the behavior of solutions ofcertain partial differential equations.
本文的目的是研究与Banach空间理论及其应用有关的若干问题。 该项目的一部分涉及到一个Banach空间的另一个扩展理论。 例如,它计划研究的问题,这些Banach空间的分类,使每一个最小的扩展是平凡的. 这个问题可以重新表述为逼近论中的一个问题。 它还计划研究应用到问题的thenonlinear理论的Banach空间,有关的问题ofexistence的一致同胚之间的两个Banach空间或其单位球。 在一个稍微不同的方向,提议者计划继续他的 Rademacher有界算子族的研究及其在扇形算子和半群中的应用.扩张理论可以从以下几个方面来考虑. 假设我们有一个三维或多维的中心对称固体,我们只允许计算它在某些方向上的截面和物体在垂直方向上的投影,这给了我们一些关于该固体的信息,但不允许完全重建。 研究扩张的思想是在某些附加条件下获得关于身体的更完整的信息。 许多重要的问题, 数学分析 和应用程序,虽然没有以这种方式正式表示, bevisualized可视化in terms条款of extensions扩展. 扇形算子在发展型偏微分方程的基本理论中占有重要地位, 在物理应用中非常重要。 典型的扇形算子是作用在适当空间的函数上的微分算子。 通过理解扇形算子和它们所生成的半群的性质,可以更好地理解某些偏微分方程解的行为.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Kalton其他文献
Delta-semidefinite and Delta-convex Quadratic Forms in Banach Spaces
- DOI:
10.1007/s11117-007-2106-6 - 发表时间:
2008-01-11 - 期刊:
- 影响因子:0.900
- 作者:
Nigel Kalton;Sergei V. Konyagin;Libor Veselý - 通讯作者:
Libor Veselý
Cesaro mean convergence of martingale differences in rearrangement invariant spaces
- DOI:
10.1007/s11117-007-2146-y - 发表时间:
2008-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergey V. Astashkin;Nigel Kalton;Fyodor A. Sukochev - 通讯作者:
Fyodor A. Sukochev
Nigel Kalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Kalton', 18)}}的其他基金
Banach space theory and its applications
Banach空间理论及其应用
- 批准号:
0555670 - 财政年份:2006
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Twisted Sums and Unconditional Structure for Banach Spaces
Banach 空间的扭曲和和无条件结构
- 批准号:
9870027 - 财政年份:1998
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unconditional Structure in Banach Spaces
数学科学:Banach 空间中的无条件结构
- 批准号:
9500125 - 财政年份:1995
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Group in Banach Spaces and Related Areas
数学科学:巴纳赫空间及相关领域研究小组
- 批准号:
9306868 - 财政年份:1993
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasi-Banach Spaces and Their Applications
数学科学:拟巴纳赫空间及其应用
- 批准号:
9201357 - 财政年份:1992
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Locally Convex Spaces and Their Applications in Analysis
数学科学:非局部凸空间及其在分析中的应用
- 批准号:
8901636 - 财政年份:1989
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-spaces and the Space Lp for p less than 1
数学科学:关于非局部凸 F 空间和 p 小于 1 的空间 Lp
- 批准号:
8601401 - 财政年份:1986
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-Spaces and the Spaces Lp, O Less Than P Less Than or Equal to 1
数学科学:关于非局部凸 F 空间和空间 Lp, O 小于 P 小于或等于 1
- 批准号:
8301099 - 财政年份:1983
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
On Non-Locally Convex Linear Metric Spaces
关于非局部凸线性度量空间
- 批准号:
8001852 - 财政年份:1980
- 资助金额:
$ 28.52万 - 项目类别:
Continuing Grant
On Non-Locally Convex Frechet Spaces
关于非局部凸 Frechet 空间
- 批准号:
7903079 - 财政年份:1979
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
相似海外基金
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2022
- 资助金额:
$ 28.52万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2021
- 资助金额:
$ 28.52万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2020
- 资助金额:
$ 28.52万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2019
- 资助金额:
$ 28.52万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
- 批准号:
1912897 - 财政年份:2018
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Geometry of hyperbolic groups and of their actions on Banach spaces
双曲群的几何及其在巴纳赫空间上的作用
- 批准号:
2099922 - 财政年份:2018
- 资助金额:
$ 28.52万 - 项目类别:
Studentship
Geometric constants of Banach Spaces and their applications
Banach空间的几何常数及其应用
- 批准号:
17K05287 - 财政年份:2017
- 资助金额:
$ 28.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Banach spaces and their spaces of operators
Banach空间的几何及其算子空间
- 批准号:
1600600 - 财政年份:2016
- 资助金额:
$ 28.52万 - 项目类别:
Standard Grant
Certain classes of operators on Banach spaces and Banach lattices and their invariant subspaces
Banach 空间和 Banach 格及其不变子空间上的某些类算子
- 批准号:
404330-2011 - 财政年份:2012
- 资助金额:
$ 28.52万 - 项目类别:
Postdoctoral Fellowships
Certain classes of operators on Banach spaces and Banach lattices and their invariant subspaces
Banach 空间和 Banach 格及其不变子空间上的某些类算子
- 批准号:
404330-2011 - 财政年份:2011
- 资助金额:
$ 28.52万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




