Mathematical Sciences: Research Group in Banach Spaces and Related Areas
数学科学:巴纳赫空间及相关领域研究小组
基本信息
- 批准号:9306868
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1995-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this award is to support a conference at the University of Missouri on the interaction of Functional Analysis, Harmonic Analysis, and Probability Theory. Proceedings of the conference will be published. The core topic of the conference is Banach space theory, which is that part of mathematics that attempts to generalize to infinitely many dimensions the structure of 3-dimensional Euclidean (i.e.ordinary) space. The axioms for the distance function in a Banach space are more relaxed than those for Euclidean distance (For example, the "parallelogram law" is not required to hold.), and as a result, the "geometry" of a Banach space can be quite exotic. Much of the research in this area concerns studying the structure theory of Banach spaces.
这一奖项的目的是支持在密苏里大学举行的关于泛函分析、调和分析和概率理论相互作用的会议。会议纪要将予以公布。会议的核心话题是Banach空间理论,它是试图将三维欧几里得(即普通)空间的结构推广到无限多维的数学部分。Banach空间中距离函数的公理比欧几里德距离的公理要宽松得多(例如,不需要遵守“平行四边形定律”),因此,Banach空间的“几何”可能是相当奇异的。这方面的许多研究都涉及到对Banach空间的结构理论的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Kalton其他文献
Delta-semidefinite and Delta-convex Quadratic Forms in Banach Spaces
- DOI:
10.1007/s11117-007-2106-6 - 发表时间:
2008-01-11 - 期刊:
- 影响因子:0.900
- 作者:
Nigel Kalton;Sergei V. Konyagin;Libor Veselý - 通讯作者:
Libor Veselý
Cesaro mean convergence of martingale differences in rearrangement invariant spaces
- DOI:
10.1007/s11117-007-2146-y - 发表时间:
2008-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergey V. Astashkin;Nigel Kalton;Fyodor A. Sukochev - 通讯作者:
Fyodor A. Sukochev
Nigel Kalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Kalton', 18)}}的其他基金
Banach space theory and its applications
Banach空间理论及其应用
- 批准号:
0555670 - 财政年份:2006
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Banach Spaces and their Applications
Banach 空间及其应用
- 批准号:
0244515 - 财政年份:2003
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Twisted Sums and Unconditional Structure for Banach Spaces
Banach 空间的扭曲和和无条件结构
- 批准号:
9870027 - 财政年份:1998
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unconditional Structure in Banach Spaces
数学科学:Banach 空间中的无条件结构
- 批准号:
9500125 - 财政年份:1995
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasi-Banach Spaces and Their Applications
数学科学:拟巴纳赫空间及其应用
- 批准号:
9201357 - 财政年份:1992
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Locally Convex Spaces and Their Applications in Analysis
数学科学:非局部凸空间及其在分析中的应用
- 批准号:
8901636 - 财政年份:1989
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-spaces and the Space Lp for p less than 1
数学科学:关于非局部凸 F 空间和 p 小于 1 的空间 Lp
- 批准号:
8601401 - 财政年份:1986
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-Spaces and the Spaces Lp, O Less Than P Less Than or Equal to 1
数学科学:关于非局部凸 F 空间和空间 Lp, O 小于 P 小于或等于 1
- 批准号:
8301099 - 财政年份:1983
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
On Non-Locally Convex Linear Metric Spaces
关于非局部凸线性度量空间
- 批准号:
8001852 - 财政年份:1980
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
On Non-Locally Convex Frechet Spaces
关于非局部凸 Frechet 空间
- 批准号:
7903079 - 财政年份:1979
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
REU Site: Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
2149642 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Undergraduate Research Experiences in the Mathematical Sciences for Community College Students
社区学院学生数学科学本科合作研究经验
- 批准号:
2150195 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
- 批准号:
LE220100107 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
AARMS (Atlantic Association for Research in the Mathematical Sciences)
AARMS(大西洋数学科学研究协会)
- 批准号:
568576-2022 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Institutes Support Grants
REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
- 批准号:
2150094 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant