Twisted Sums and Unconditional Structure for Banach Spaces
Banach 空间的扭曲和和无条件结构
基本信息
- 批准号:9870027
- 负责人:
- 金额:$ 18.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-01 至 2004-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9870027 Principal Investigator: Nigel J. Kalton Abstract: The aim of this proposal is to study a number of problems related to the notion of an extension of one Banach space by another, and the relationships between extensions and unconditional structure. It is proposed to attempt to resolve the conjecture that if every minimal extension of a Banach space is trivial then the space has finite cotype, and to attempt a classification of those spaces so that every extension by a Hilbert space is trivial. Both these problems can be reformulated in other terms and would have considerable significance independent of the theory of extensions. The proposer will also work on the fundamental problem in the theory of unconditional structure of whether every complemented subspace of a Banach space with unconditional basis also has an unconditional basis. The theory of extensions can be considered in the following terms. Suppose we are given a centrally symmetric solid in three or more dimensions and we are allowed only to compute its cross-section by a slice in some directions and the shadow cast by the body in the perpendicular directions. This allows us to compute certain information about the solid, but not to reconstruct it completely. The aim of this project is to obtain more complete information about the body under certain additional conditions. It turns out that many questions of importance in mathematical analysis and applications, although not expressed in this form, can be visualized as problems of this nature, perhaps involving infinite dimensions. An unconditional basis in a particular class of functions is a collection of relatively simple functions with which we can approximate every member of the class; such approximations are very important for many practical situations, for example in engineering applications. One of the aims of this project is to decide general conditions under w hich a basis can be constructed. There is interaction between the theory of extensions and of unconditional bases which this project will explore further.
摘要:本文的目的是研究一个Banach空间被另一个Banach空间扩展的概念以及扩展与无条件结构之间的关系。本文试图解决一个猜想,即如果Banach空间的每一个最小扩展都是平凡的,那么这个空间就有有限的共型,并尝试对这些空间进行分类,使Hilbert空间的每一个扩展都是平凡的。这两个问题都可以用其他术语重新表述,并且与扩展理论无关,具有相当大的意义。本文还将研究无条件结构理论中的基本问题,即具有无条件基的Banach空间的补子空间是否也具有无条件基。可拓理论可以用以下术语来考虑。假设我们有一个三维或多维的中心对称实体,我们只允许计算它在某些方向上的截面和物体在垂直方向上的阴影。这使我们能够计算关于固体的某些信息,但不能完全重建它。该项目的目的是在某些附加条件下获得关于身体的更完整的信息。事实证明,在数学分析和应用中,许多重要的问题,虽然没有以这种形式表示,但可以被可视化为这种性质的问题,可能涉及无限维。特定函数类中的无条件基是相对简单函数的集合,我们可以用它来近似该类中的每一个成员;这种近似对于许多实际情况非常重要,例如在工程应用中。该项目的目的之一是确定可以构建基础的一般条件。可拓理论和无条件基础理论之间存在相互作用,本项目将进一步探讨这一点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Kalton其他文献
Delta-semidefinite and Delta-convex Quadratic Forms in Banach Spaces
- DOI:
10.1007/s11117-007-2106-6 - 发表时间:
2008-01-11 - 期刊:
- 影响因子:0.900
- 作者:
Nigel Kalton;Sergei V. Konyagin;Libor Veselý - 通讯作者:
Libor Veselý
Cesaro mean convergence of martingale differences in rearrangement invariant spaces
- DOI:
10.1007/s11117-007-2146-y - 发表时间:
2008-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergey V. Astashkin;Nigel Kalton;Fyodor A. Sukochev - 通讯作者:
Fyodor A. Sukochev
Nigel Kalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Kalton', 18)}}的其他基金
Banach space theory and its applications
Banach空间理论及其应用
- 批准号:
0555670 - 财政年份:2006
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Banach Spaces and their Applications
Banach 空间及其应用
- 批准号:
0244515 - 财政年份:2003
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unconditional Structure in Banach Spaces
数学科学:Banach 空间中的无条件结构
- 批准号:
9500125 - 财政年份:1995
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Group in Banach Spaces and Related Areas
数学科学:巴纳赫空间及相关领域研究小组
- 批准号:
9306868 - 财政年份:1993
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasi-Banach Spaces and Their Applications
数学科学:拟巴纳赫空间及其应用
- 批准号:
9201357 - 财政年份:1992
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Locally Convex Spaces and Their Applications in Analysis
数学科学:非局部凸空间及其在分析中的应用
- 批准号:
8901636 - 财政年份:1989
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-spaces and the Space Lp for p less than 1
数学科学:关于非局部凸 F 空间和 p 小于 1 的空间 Lp
- 批准号:
8601401 - 财政年份:1986
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Non-Locally Convex F-Spaces and the Spaces Lp, O Less Than P Less Than or Equal to 1
数学科学:关于非局部凸 F 空间和空间 Lp, O 小于 P 小于或等于 1
- 批准号:
8301099 - 财政年份:1983
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
On Non-Locally Convex Linear Metric Spaces
关于非局部凸线性度量空间
- 批准号:
8001852 - 财政年份:1980
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
On Non-Locally Convex Frechet Spaces
关于非局部凸 Frechet 空间
- 批准号:
7903079 - 财政年份:1979
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
相似海外基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
Ubiquity of Kloosterman sums in Number Theory and Beyond
克洛斯特曼求和在数论及其他领域中无处不在
- 批准号:
DP230100534 - 财政年份:2023
- 资助金额:
$ 18.63万 - 项目类别:
Discovery Projects
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Discovery Grants Program - Individual
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Research Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Continuing Grant
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
- 批准号:
2212924 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Standard Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Discovery Grants Program - Individual
New techniques for exponential sums over low degree polynomials
低次多项式指数和的新技术
- 批准号:
DE220100859 - 财政年份:2022
- 资助金额:
$ 18.63万 - 项目类别:
Discovery Early Career Researcher Award
Anatomy and Physiology of Numbers -Statistics of Primes and Aliquot Sums-
数字的解剖学和生理学-素数和等分和的统计-
- 批准号:
21K13772 - 财政年份:2021
- 资助金额:
$ 18.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2021
- 资助金额:
$ 18.63万 - 项目类别:
Discovery Grants Program - Individual