Statistical Mechanics and Field Theory

统计力学和场论

基本信息

  • 批准号:
    0244884
  • 负责人:
  • 金额:
    $ 11.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

1. The purpose of this project is to enhance our understanding of fundamental problems instatistical mechanics and probability theory through the use of mathematical methodsinvolving supersymmetry and the renormalization group. Of particular interest arestatistical models with a geometrical flavor, such as branched polymers and self-avoidingwalks. Basic questions for these models involve, for example, determining the rate atwhich the size of a sample grows with the number of monomers or steps. Such divergencesare governed by critical exponents. The values of the exponents may be determined in oneof two ways, either through dimensional reduction (which relates exponents to knownexponents in related systems in fewer dimensions), or through the renormalization group(which calculates the flow of couplings with the length scale as the microscopicstructures of the problem are averaged out). Supersymmetry plays an important role inboth methods.Specific goals are: (a) to continue to develop a mathematical theory of dimensionalreduction and apply it to new models, such as directed branched polymers; and (b) toconstruct an exact renormalization group flows for such systems.2. Research activities in this proposal will involve collaborations and exchanges ofideas with mathematicians and physicists in a wide range of fields, including probability,analysis, statistical mechanics, and quantum field theory. Graduate student support, andgraduate student participation in scientific meetings, will integrate research andeducation and help train a new generation of mathematicians in the methods of fieldtheory, supersymmetry, and the renormalization group. These activities will in the longrun lead to enhanced interaction between mathematics and physics and to new ideas in bothfields.
1. 本项目的目的是通过使用涉及超对称性和重正化群的数学方法来增强我们对统计力学和概率论基本问题的理解。特别令人感兴趣的是具有几何风格的统计模型,例如支化聚合物和自回避行走。例如,这些模型的基本问题涉及确定样本大小随单体或步骤数量增长的速率。这种分歧是由临界指数决定的。指数的值可以通过两种方式之一确定,或者通过降维(​​将指数与相关系统中的已知指数以更少的维度联系起来),或者通过重正化群(当问题的微观结构被平均时计算与长度尺度的耦合流)。超对称性在这两种方法中都发挥着重要作用。具体目标是:(a)继续发展降维数学理论并将其应用于新模型,例如定向支化聚合物; (b) 为此类系统构造精确的重整化群流。 2.该提案中的研究活动将涉及与数学家和物理学家在广泛领域的合作和思想交流,包括概率、分析、统计力学和量子场论。研究生支持以及研究生参加科学会议将把研究和教育结合起来,帮助培养场论、超对称和重正化群方法方面的新一代数学家。从长远来看,这些活动将增强数学和物理之间的相互作用,并在这两个领域产生新的想法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Imbrie其他文献

Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) :
地球轨道的变化:冰河时代的起搏器 作者:
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. D. Hays;John Imbrie
  • 通讯作者:
    John Imbrie
P525: Medical genetics providers require training and institutional support to integrate pharmacogenomic testing
  • DOI:
    10.1016/j.gimo.2024.101424
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Imbrie;Christina Tise;Kendall Schmidt;Hetanshi Naik;Stuart Scott
  • 通讯作者:
    Stuart Scott
Renormalization of the Higgs model: Minimizers, propagators and the stability of mean field theory
  • DOI:
    10.1007/bf01206191
  • 发表时间:
    1985-03-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Tadeusz Bałaban;John Imbrie;Arthur Jaffe
  • 通讯作者:
    Arthur Jaffe
Climatic collaboration
气候合作
  • DOI:
    10.1038/274844b0
  • 发表时间:
    1978-08-31
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    John Imbrie
  • 通讯作者:
    John Imbrie

John Imbrie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Imbrie', 18)}}的其他基金

Mathematical Sciences: Mathematical Physics: Statistical Mechanics and Field Theory
数学科学:数学物理:统计力学和场论
  • 批准号:
    9401520
  • 财政年份:
    1994
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Mathematical Physics: Statistical Mechanics and Field Theory (Physics)
数学物理:统计力学和场论(物理)
  • 批准号:
    9196161
  • 财政年份:
    1991
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9120962
  • 财政年份:
    1991
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Mathematical Physics: Statistical Mechanics and Field Theory (Physics)
数学物理:统计力学和场论(物理)
  • 批准号:
    9008827
  • 财政年份:
    1990
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Experiments with the Climatic Response to Radiation Forcing Over the Milankovitch Frequency Band
米兰科维奇频段辐射强迫的气候响应实验
  • 批准号:
    8812589
  • 财政年份:
    1988
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator
数学科学:总统青年研究员
  • 批准号:
    8858073
  • 财政年份:
    1988
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Correlation and Chronology of The Vostok Ice-Core Record
东方冰芯记录的相关性和年代学
  • 批准号:
    8706394
  • 财政年份:
    1987
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Field Theory and Disordered Systems (Physics)
场论和无序系统(物理学)
  • 批准号:
    8706420
  • 财政年份:
    1987
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Mathematical Physics: Field Theory and Disordered Systems
数学物理:场论和无序系统
  • 批准号:
    8413285
  • 财政年份:
    1985
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
An Investigation of Climate Spectra Over Eight Frequency Decades (10 to 10-8 y-1). ,
八个频率十年(10 至 10-8 y-1)气候频谱的调查。
  • 批准号:
    8516140
  • 财政年份:
    1985
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
  • 批准号:
    2247846
  • 财政年份:
    2023
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Non-equilibrium statistical mechanics of mean-field spin chains
平均场自旋链的非平衡统计力学
  • 批准号:
    383406-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 11.36万
  • 项目类别:
    University Undergraduate Student Research Awards
Creating an interdisciplinary field of classical and quantum information sciences and statistical mechanics of frustrated system
创建经典和量子信息科学以及受挫系统统计力学的跨学科领域
  • 批准号:
    18079005
  • 财政年份:
    2006
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Nonlocal Statistical Mechanics and Logarithmic Conformal Field Theory
非局部统计力学和对数共形场论
  • 批准号:
    DP0556412
  • 财政年份:
    2005
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Discovery Projects
Studies of Model Systems in Statistical Mechanics and Quantum Field Theory
统计力学和量子场论模型系统的研究
  • 批准号:
    0302758
  • 财政年份:
    2003
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Solvable models on regular and random lattices in statistical mechanics and field theory
统计力学和场论中规则和随机晶格的可解模型
  • 批准号:
    ARC : DP0208481
  • 财政年份:
    2002
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Discovery Projects
Solvable models on regular and random lattices in statistical mechanics and field theory
统计力学和场论中规则和随机晶格的可解模型
  • 批准号:
    DP0208481
  • 财政年份:
    2002
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Discovery Projects
Model Systems in Statistical Mechanics and Quantum Field Theory
统计力学和量子场论中的模型系统
  • 批准号:
    0073058
  • 财政年份:
    2000
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Studies of Model Systems in Statistical Mechanics and Quantum Field Theory
统计力学和量子场论模型系统的研究
  • 批准号:
    9703543
  • 财政年份:
    1997
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Japan Long-Term Visit: Statistical Mechanics and Conformal Field Theory
日本长期考察:统计力学与共形场论
  • 批准号:
    9508783
  • 财政年份:
    1995
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了