Quantum Cohomology, Representation Theory, and Feynman Amplitudes
量子上同调、表示论和费曼振幅
基本信息
- 批准号:0300356
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2007-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Principal Investigator: Prakash BelkaleProposal Number: 0300356Institution: University of North Carolina at Chapel HillAbstract: Quantum Cohomology, Representation theory and Feynman AmplitudesThe principal investigator wants to pursue research in two areas: Representations of the fundamental group and Quantum Cohomology, and the study of the structure of Feynman amplitudes (the second area is in collaboration with Patrick Brosnan of UCLA). In the first field, the PI wants to generalise his recent geometric proof of Horn and Saturation conjectures to the Quantum analogues of these conjectures. This project is inspired by the the problem of unitary representations of the fundamental group of p1 of projective n-space with n points removed with prescribed local monodromies. The principal investigator plans to investigate the existence of Horn type recursion for other groups and study analogues of the Saturation conjecture. A final goal of this work is to determine an optimal set of inequalities for the problem of existence of unitary representations with prescribed monodromies. In the second field (in collaboration with Brosnan), the principal investigator will continue the study of relations between Feynman amplitudes and algebraic geometry. The first step of this work is to understand in general Algebro-geometric terms the integral computations of the physicists.The study of relations between Representation theory (`symmetries') and Algebraic Geometry is a very important area of research. Part of the motivation for this work comes from eigenvalue problems, which are important in numerical computing and in wave mechanics. The work on the geometry of Feynman amplitudes is of interest both in mathematics and physics. The aim is a better mathematical understanding of Feynman amplitudes, which are fundamental to the quantum theory.
主要研究者:Prakash Belkale提案编号:0300356机构:北卡罗来纳州教堂山大学摘要:量子上同调,表示论和费曼振幅主要研究者希望在两个领域进行研究:基本群和量子上同调的表示,以及费曼振幅结构的研究(第二个领域是与加州大学洛杉矶分校的帕特里克布鲁斯南合作)。在第一个领域中,PI希望将他最近对Horn和Saturation的几何证明推广到这些几何的量子类似物。这个项目的灵感来自于射影n-空间的p1的基本群的酉表示问题,其中n个点被指定的局部单值性去除。主要研究人员计划调查其他群体的霍恩型递归的存在性,并研究类似的饱和猜想。 这项工作的最终目标是确定一个最佳的一组不等式的问题存在的酉表示与规定的monodromies。在第二个领域(与布鲁斯南合作),主要研究员将继续研究费曼振幅和代数几何之间的关系。这项工作的第一步是理解一般代数几何术语的积分计算的物理学家。研究之间的关系表示论(“对称性”)和代数几何是一个非常重要的研究领域。这项工作的部分动机来自本征值问题,这是重要的数值计算和波动力学。 费曼振幅的几何学研究在数学和物理学中都很有意义。目的是更好地数学理解费曼振幅,这是量子理论的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prakash Belkale其他文献
Scaling of conformal blocks and generalized theta functions over $$\overline{\mathcal {M}}_{g,n}$$
- DOI:
10.1007/s00209-016-1682-1 - 发表时间:
2016-05-10 - 期刊:
- 影响因子:1.000
- 作者:
Prakash Belkale;Angela Gibney;Anna Kazanova - 通讯作者:
Anna Kazanova
Prakash Belkale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prakash Belkale', 18)}}的其他基金
The Hodge theory of Knizhnik-Zamolodchikov equations and Rigid Local Systems
Knizhnik-Zamolodchikov 方程和刚性局部系统的 Hodge 理论
- 批准号:
2302288 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Theta Functions, Intersection Theory and Representation Theory
Theta 函数、交集理论和表示论
- 批准号:
0901249 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
Monoidal Triangular Categories: Representation Theory, Cohomology, and Geometry
幺半群三角范畴:表示论、上同调和几何
- 批准号:
2101941 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying spaces from the viewpoint of representation theory
从表示论的角度看有限群的上同调与空间分类同伦论
- 批准号:
21K03154 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
- 批准号:
1903754 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Applying amalgams to representation theory and cohomology
将汞齐应用于表示论和上同调
- 批准号:
1935781 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Studentship
Cohomology theory of finite groups from the viewpoint of representation theory
从表示论的角度看有限群的上同调理论
- 批准号:
16K05054 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theory, Geometry, and Cohomology in Tensor Triangulated Categories
张量三角范畴中的表示论、几何和上同调
- 批准号:
1402271 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Cohomology of finite groups and homotopy theory of classifying space from the view point of representation theory
表示论角度的有限群上同调与空间分类同伦论
- 批准号:
24540007 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Cohomology and Support in Representation Theory and Related Topics
会议:表示论及相关主题中的上同调和支持
- 批准号:
1201345 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
- 批准号:
41981-2007 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Connections between cohomology and representation theory of symmetric groups, braid groups, Hecke algebras, and algebraic groups
对称群、辫群、赫克代数和代数群的上同调与表示论之间的联系
- 批准号:
1068783 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant