Conference on Equivariant Elliptic Cohomology and Geometric Representation Theory
等变椭圆上同调与几何表示理论会议
基本信息
- 批准号:1903754
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the workshop "Geometric Representation Theory and Equivariant Elliptic Cohomology'' to take place June 10--14, 2019, at the University of Illinois at Urbana-Champaign. This workshop will provide the opportunity for mathematicians working in the fields of representation theory, topology, and mathematical physics to share their research findings and develop collaborations. Grant funds will be utilized primarily to support the travel and attendance costs of conference participants, particularly graduate students, recent PhDs, and researchers who lack their own travel funds. Broadly speaking, representation theory studies symmetries, topology studies mathematical spaces, and mathematical physics looks to find mathematical underpinnings for ideas from theoretical physics. These three areas come together in the burgeoning field of equivariant elliptic cohomology. This is a particular mathematical object with roots in all three of these areas of mathematics. A better understanding of this object would both have deep impacts in these areas and also forge previously unseen connections between them. The workshops will be advertised internationally, and graduate students and members of underrepresented groups will be given top priority for funding. The website for the workshop is https://faculty.math.illinois.edu/~ecliff/MRC/EEC.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持将于2019年6月10日至14日在伊利诺伊大学厄巴纳-香槟分校举行的“几何表示理论与等变椭圆上同调”研讨会。本研讨会将为从事表示理论、拓扑学和数学物理领域的数学家提供分享他们的研究成果和开展合作的机会。赠款资金将主要用于支持与会者的旅费和出席费用,特别是研究生、新近毕业的博士和没有自己旅费的研究人员。广义而言,表示论研究对称性,拓扑学研究数学空间,数学物理学从理论物理中寻找思想的数学基础。这三个领域在等变椭圆上同调这一新兴领域中汇聚在一起。这是一个特殊的数学对象,植根于这三个数学领域。更好地了解这一天体既会对这些领域产生深刻影响,也会在它们之间建立以前看不到的联系。研讨会将在国际上进行宣传,研究生和代表性不足群体的成员将获得最优先的资助。研讨会的网站是https://faculty.math.illinois.edu/~ecliff/MRC/EEC.htmlThis奖,反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Berwick Evans其他文献
Daniel Berwick Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Berwick Evans', 18)}}的其他基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Elliptic Cohomology, Geometry, and Physics
椭圆上同调、几何和物理
- 批准号:
2205835 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似海外基金
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generalized Steenrod operations and equivariant geometry
广义 Steenrod 运算和等变几何
- 批准号:
2305016 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Deformation on equivariant completions of vector groups into Fano varieties and K-stability
向量组等变完成变形为 Fano 簇和 K 稳定性
- 批准号:
23K03047 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nested sampling from equivariant Graph Neural Networks
等变图神经网络的嵌套采样
- 批准号:
2886221 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Borsuk-Ulam type invariants and the existence problem of equivariant maps
Borsuk-Ulam型不变量和等变映射的存在问题
- 批准号:
23K03095 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
- 批准号:
2304781 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Applications of equivariant stable homotopy theory
等变稳定同伦理论的应用
- 批准号:
2301520 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
- 批准号:
2313842 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant