Heights, Capacity, and Dynamics

高度、容量和动力

基本信息

项目摘要

DMS-0300784Rumely, Robert S.AbstractTitle: Heights, Capacity, and DynamicsIn this project, the Principal Investigators study various aspects ofanalysis on p-adic spaces, especially those arising in connection withcanonical heights, capacity theory, and algebraic dynamical systems. The project involves the development of both theory and applications, and comprises three main topics: adelic equidistribution theorems for pointsof small height; arithmetic aspects of the dynamics of iterated rationalfunctions; and analysis on Berkovich spaces with applications to dynamicalsystems, arithmetic intersection theory, and higher-dimensional capacitytheory. The motivation for this work is to understand and generalize certainrecently discovered properties of "height functions". Height functionsfirst arose in connection with elliptic curves, and are ubiquitous inmodern number theory. One of the goals of the project is to establishproperties of heights for arbitrary curves and arbitrary dynamical systemswhich are similar to those for elliptic curves. This will be approached byusing methods from potential theory. Another goal is to establish"p-adic" analogues of results which are known to hold in the theory ofmanifolds. When completed, the project will reveal new connectionsbetween number theory, dynamical systems, and potential theory. Fundingfor this project will support the infrastructure of the University ofGeorgia's number theory group, which has historically been very strong. The project will impact both the graduate and undergraduate programs atUGA: some of the questions raised by this research will lead to PhDdissertation topics for graduate students, and others will provide anopportunity to involve undergraduate students in cutting edge mathematicalresearch.
DMS-0300784Rumely,Robert S.摘要标题:高度、容量和动力学在该项目中,主要研究人员研究了 p-adic 空间分析的各个方面,特别是与规范高度、容量理论和代数动力系统相关的分析。 该项目涉及理论和应用的发展,包括三个主要主题:小高度点的等分布定理;迭代有理函数动力学的算术方面;伯科维奇空间及其在动力系统、算术交集理论和高维容量理论中的应用分析。 这项工作的动机是理解和概括最近发现的“高度函数”的某些属性。 高度函数首先与椭圆曲线相关,并且在现代数论中无处不在。 该项目的目标之一是建立任意曲线和任意动力系统的高度属性,类似于椭圆曲线的高度属性。这将通过使用势理论的方法来实现。 另一个目标是建立已知在流形理论中成立的结果的“p进”类似物。 完成后,该项目将揭示数论、动力系统和势论之间的新联系。 该项目的资金将支持乔治亚大学数论小组的基础设施,该小组历来非常强大。该项目将影响佐治亚大学的研究生和本科生课程:这项研究提出的一些问题将成为研究生的博士论文主题,而其他问题将为本科生参与前沿数学研究提供机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Rumely其他文献

Arithmetic capacities on ℙ N
  • DOI:
    10.1007/bf02571729
  • 发表时间:
    1994-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Robert Rumely;Chi Fong Lau
  • 通讯作者:
    Chi Fong Lau

Robert Rumely的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Rumely', 18)}}的其他基金

Analysis on Berkovich spaces and Arithmetic dynamics
贝尔科维奇空间和算术动力学分析
  • 批准号:
    0601037
  • 财政年份:
    2006
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
The Fekete-Szego Theorem on Curves, with Splitting Conditions
具有分裂条件的曲线 Fekete-Szego 定理
  • 批准号:
    0070736
  • 财政年份:
    2000
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory, Green's Functions, and Intersection Theory
数学科学:容量理论、格林函数和交集理论
  • 批准号:
    9500842
  • 财政年份:
    1995
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory on Varieties
数学科学:簇的容量理论
  • 批准号:
    9103553
  • 财政年份:
    1991
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic Capacity Theory
数学科学:算术能力论
  • 批准号:
    8811507
  • 财政年份:
    1988
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory on Algebraic Curves
数学科学:代数曲线的容量论
  • 批准号:
    8201792
  • 财政年份:
    1982
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
Two Topics in Number Theory
数论中的两个主题
  • 批准号:
    7905942
  • 财政年份:
    1979
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4: NSF: Building Linkages: Assessing the Importance of Terrestrial Climate in Deglacial Ice Sheet Dynamics through Collaborative Research Capacity Building
RII Track-4:NSF:建立联系:通过合作研究能力建设评估陆地气候在冰消冰盖动力学中的重要性
  • 批准号:
    2229696
  • 财政年份:
    2023
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
Multi-actor collaboration dynamics and capacity building network inside and between Agriculture Knowledge and Innovation Systems (AKIS) to foster the upscaling of Short Food Supply Chains (SFSCs) across Europe
农业知识和创新系统(AKIS)内部和之间的多方协作动态和能力建设网络,以促进整个欧洲短食品供应链(SFSC)的升级
  • 批准号:
    10040921
  • 财政年份:
    2022
  • 资助金额:
    $ 18.9万
  • 项目类别:
    EU-Funded
CAREER: Building research and decision making capacity in the Arctic through deciphering storm-induced sediment dynamics and synergistic Alaska Native coastal science education
职业:通过破译风暴引起的沉积物动力学和协同阿拉斯加本土沿海科学教育,建设北极的研究和决策能力
  • 批准号:
    1848542
  • 财政年份:
    2019
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Fatty acid dynamics as insulin secretion capacity regulating factor: analysis in human islets
作为胰岛素分泌能力调节因子的脂肪酸动力学:人类胰岛的分析
  • 批准号:
    17KK0184
  • 财政年份:
    2018
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
The dynamics of embolism formation and repair in xylem conduits: from bubble scale to loss in plant hydraulic transport capacity
木质部导管中栓塞形成和修复的动力学:从气泡规模到植物水力输送能力的损失
  • 批准号:
    1754893
  • 财政年份:
    2018
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Linking thermal tolerance to invasion dynamics: Climate and physiological capacity as regulators of geographical spread
合作研究:RUI:将耐热性与入侵动态联系起来:气候和生理能力作为地理传播的调节因素
  • 批准号:
    1702701
  • 财政年份:
    2017
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
Fatty acid dynamics as insulin secretion capacity regulating factor: analysis in new model mice
作为胰岛素分泌能力调节因子的脂肪酸动力学:新模型小鼠的分析
  • 批准号:
    17K08780
  • 财政年份:
    2017
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Linking thermal tolerance to invasion dynamics: Environment and physiological capacity as regulators of geographical spread
合作研究:将耐热性与入侵动态联系起来:环境和生理能力作为地理传播的调节因素
  • 批准号:
    1702545
  • 财政年份:
    2017
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
Collborative Research: Linking Thermal Tolerance to Invasion Dynamics: Climate and Physiological Capacity as Regulators of Geographical Spread
合作研究:将耐热性与入侵动态联系起来:气候和生理能力作为地理传播的调节因素
  • 批准号:
    1702312
  • 财政年份:
    2017
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Chalcogenide-doped High Capacity Lithium-ion Battery Anode Materilas during Cycling Using in situ Imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料循环过程中的动力学
  • 批准号:
    1603491
  • 财政年份:
    2016
  • 资助金额:
    $ 18.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了