Analysis on Berkovich spaces and Arithmetic dynamics

贝尔科维奇空间和算术动力学分析

基本信息

项目摘要

DMS-0601037Robert Rumely This project concerns the development of analytic tools on Berkovich spaces, with applications to the dynamics of rational functions. Three problems will be investigated. First, the Principal Investigator will address a finiteness conjecture of Ih, which asserts that for any dynamical system associated to a rational function over a number field, there are only finitely many preperiodic points which are integral with respect to a fixed non-preperiodic point. The attack involves proving an analogue, for preperiodic points, of Baker's theorem on linear forms in logarithms. Second, using a recently-developed Arakelov theory for the Berkovich projective line, P.I. will study the no-wandering domains conjecture for rational maps over nonarchimedean local fields. Third, the P.I. will investigate pluripotential theory on Berkovich spaces of arbitrary dimension, with the goal of defining a nonarchimedean Monge-Ampere operator and using it to create an adelic arithmetic intersection theory. In these investigations, the P.I. will collaborate with other members of an emerging group in arithmetic dynamics. He will also mentor University of Georgia graduate students and recent number theory Ph.D.'s in the southeastern United States. This project involves research at the interface of two branches of mathematics, analysis (the study of functions) and dynamics (the study of iteration), with a focus on questions related to number theory. One of the scientific goals of the project is to prove a general finiteness conjecture for dynamical systems attached to rational functions. Two important cases of the conjecture, for roots of unity and for torsion points on elliptic curves, were proved under the P.I.'s previous NSF grant. The planned attack involves generalizing a fundamental arithmetical tool used in the earlier proof, to the context of dynamical systems. A second goal is to complete the classification of dynamical systems for rational functions defined over p-adic fields, showing that an analogue of the well-known "no wandering domains" theorem of Sullivan, proved for rational functions over the complex numbers, holds in the nonarchimedean locally compact case as well. A third goal is to extend a theory of subharmonic functions on the p-adic projective line, developed by the P.I., to higher-dimensional p-adic varieties. This will be used to construct an Arakelov theory for higher-dimensional varieties which treats archimedean and nonarchimedean contributions in a parallel, analytical way. In carrying out this research, the P.I. plans to collaborate extensively with other mathematicians, both junior and senior; one of the infrastructure goals of the project is to strengthen an emerging interdisciplinary research group focusing on number-theoretic aspects of dynamics. Another infrastructure goal is to mentor current University of Georgia doctoral students, and to main ties with and encourage graduates of the UGA number theory program who are now teaching at small colleges in the southeastern United States.
DMS-0601037罗伯特·鲁姆利这个项目涉及Berkovich空间上分析工具的开发,以及有理函数动力学的应用。将调查三个问题。首先,首席调查者将解决ih的一个有限猜想,该猜想断言对于与数域上的有理函数相关联的任何动力系统,只有有限多个预周期点相对于固定的非预周期点是积分的。这一攻击涉及证明一个类似于贝克关于对数形式的线性形式的对数周期前点的定理。其次,利用最近发展的关于Berkovich投影线的Arakelov理论,P.I.将研究非阿基米德局部域上有理映射的非游荡域猜想。第三,P.I.将研究任意维Berkovich空间上的多势理论,目的是定义一个非阿基米德Monge-Ampere算子,并用它来创建一个非阿德勒算术交集理论。在这些调查中,私家侦探将与一个新兴的算术动力学小组的其他成员合作。他还将在美国东南部指导佐治亚大学的研究生和最近获得数论博士学位的S。这个项目涉及两个数学分支的界面研究,分析(函数研究)和动力学(迭代研究),重点是与数论相关的问题。该项目的科学目标之一是证明与有理函数有关的动力系统的一般有限性猜想。这一猜想的两个重要例子--单位根和椭圆曲线上的扭点--在P.I.S以前的国家自然科学基金资助下得到了证明。计划中的攻击包括将早期证明中使用的基本算术工具推广到动力系统的背景下。第二个目标是完成定义在p-adad域上的有理函数动力系统的分类,证明了对于复数上的有理函数,著名的Sullivan的“无游荡域”定理的类似证明在非阿基米德局部紧的情况下也成立。第三个目标是将P.I.发展的p-进射线上的次调和函数理论推广到更高维的p-进射域。这将被用来构建高维变种的阿拉克洛夫理论,该理论以平行的、分析的方式对待阿基米德和非阿基米德的贡献。在开展这项研究时,P.I.计划与其他初级和高级数学家广泛合作;该项目的基础设施目标之一是加强一个新兴的跨学科研究小组,专注于动力学的数论方面。另一个基础设施目标是指导佐治亚大学目前的博士生,并与目前在美国东南部小型大学任教的UGA数论项目的毕业生建立主要联系并鼓励他们。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Rumely其他文献

Arithmetic capacities on ℙ N
  • DOI:
    10.1007/bf02571729
  • 发表时间:
    1994-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Robert Rumely;Chi Fong Lau
  • 通讯作者:
    Chi Fong Lau

Robert Rumely的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Rumely', 18)}}的其他基金

Heights, Capacity, and Dynamics
高度、容量和动力
  • 批准号:
    0300784
  • 财政年份:
    2003
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
The Fekete-Szego Theorem on Curves, with Splitting Conditions
具有分裂条件的曲线 Fekete-Szego 定理
  • 批准号:
    0070736
  • 财政年份:
    2000
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory, Green's Functions, and Intersection Theory
数学科学:容量理论、格林函数和交集理论
  • 批准号:
    9500842
  • 财政年份:
    1995
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory on Varieties
数学科学:簇的容量理论
  • 批准号:
    9103553
  • 财政年份:
    1991
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic Capacity Theory
数学科学:算术能力论
  • 批准号:
    8811507
  • 财政年份:
    1988
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Capacity Theory on Algebraic Curves
数学科学:代数曲线的容量论
  • 批准号:
    8201792
  • 财政年份:
    1982
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
Two Topics in Number Theory
数论中的两个主题
  • 批准号:
    7905942
  • 财政年份:
    1979
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant

相似海外基金

高次元Berkovich空間におけるp進微分方程式
高维 Berkovich 空间中的 p 进微分方程
  • 批准号:
    24KJ0682
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Berkovich解析空間上の層を用いた代数多様体の退化とトロピカル多様体の研究
利用伯科维奇解析空间上的层研究代数簇和热带簇的简并性
  • 批准号:
    20J23401
  • 财政年份:
    2020
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mirror symmetry, Berkovich spaces and the Minimal Model Programme
镜像对称、伯科维奇空间和最小模型程序
  • 批准号:
    EP/S025839/1
  • 财政年份:
    2019
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Grant
Berkovich 解析空間とトロピカル幾何,代数・数論力学系の展開
贝尔科维奇分析空间和热带几何,代数/算术动力系统的发展
  • 批准号:
    18H01114
  • 财政年份:
    2018
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cohomology of real-valued differential forms on Berkovich analytic spaces
Berkovich 解析空间上实值微分形式的上同调
  • 批准号:
    387554191
  • 财政年份:
    2017
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Fellowships
Berkovich Spaces, Tropical Geometry, Combinatorics, and Dynamics
伯科维奇空间、热带几何、组合学和动力学
  • 批准号:
    1502180
  • 财政年份:
    2015
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
Berkovich Spaces, Tropical Geometry, and Arithmetic Dynamics
伯科维奇空间、热带几何和算术动力学
  • 批准号:
    1201473
  • 财政年份:
    2012
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
RUI: Families, Ramification, and Berkovich Spaces in Non-archimedean Dynamics
RUI:非阿基米德动力学中的族、分支和伯科维奇空间
  • 批准号:
    1201341
  • 财政年份:
    2012
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
Analysis on Berkovich spaces and applications
Berkovich空间分析及应用
  • 批准号:
    0600027
  • 财政年份:
    2006
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了