RUI: Combinatorial Fixed Point Theorems, Polytopes, and Fair Division
RUI:组合不动点定理、多面体和公平除法
基本信息
- 批准号:0301129
- 负责人:
- 金额:$ 14.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Proposal of SuDMS-0301129"RUI: Combinatorial fixed point theorems, polytopes, and fair division"The investigator's prior work has introduced methods from combinatorialtopology and discrete geometry to the study of certain "fair division" questions in mathematical economics. The current proposal will supportthe development of the mathematics behind these methods and the solutionof several combinatorial questions that have been motivated from economicproblems, including: (1) the development of new combinatorial fixed pointtheorems, (2) associated simplicial algorithms, and (3) the study ofminimal triangulations and minimal simplicial covers of polytopes. Broader impacts of the proposed work include its interdisciplinaryapplication to negotiation support for group decision making, and theactive participation and training of undergraduates in the proposedresearch.Informally speaking, a "fair division" problem is concerned with findingmethods for dividing a set of goods among players in such a way thateveryone can be satisfied according to some notion of fairness. Thistopic is of interest to economists, political scientists, and gametheorists, and it often motivates interesting mathematical questions. The set of possible solutions in such problems is often a polyhedron ofhigh dimension (a polytope), and one can usually find a solution bybreaking the polytope into many pieces (tetrahedra), and walking aroundthe polytope in a way that is guided by player preferences. Thus themathematics of how polytopes can be built up from its tetrahedral buildingblocks using ideas from three areas (combinatorics, topology, and discretegeometry) will have direct application to important problems in the socialsciences involving human strategy and decision making.This award is being jointly funded by the Division of Mathematical Sciences and the Directorate of Social, Behavioral, and Economic Science as part of the Mathematics Sciences Priority Area.
SuDMS-0301129“RUI:组合不动点定理、多面体和公平分割“提案摘要研究者先前的工作已经将组合拓扑和离散几何的方法引入到数理经济学中某些“公平分割”问题的研究中。 目前的建议将支持这些方法背后的数学的发展和几个组合问题的解决方案,已从经济问题的动机,包括:(1)新的组合不动点定理的发展,(2)相关的单纯算法,和(3)研究最小三角剖分和最小单纯覆盖的多面体。 拟议工作的更广泛影响包括其在群体决策谈判支持中的跨学科应用,以及本科生在拟议研究中的积极参与和培训。非正式地说,“公平分配”问题涉及找到分配一组商品的方法。参与者之间的分配方式是,每个人都可以根据某种公平概念感到满意。 这一点引起了经济学家、政治学家和博弈论家的兴趣,它经常引发有趣的数学问题。 这类问题的可能解决方案通常是一个高维多面体(多面体),人们通常可以通过将多面体分成许多块(四面体)来找到解决方案,并以玩家偏好为指导的方式在多面体中行走。 因此,数学上的多面体如何可以建立从它的四面体积木使用思想从三个领域(组合学,拓扑学和离散几何学)将直接应用于涉及人类战略和决策的社会科学中的重要问题。该奖项由数学科学部和社会,行为,和经济科学作为数学科学优先领域的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Su其他文献
Francis Su的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Su', 18)}}的其他基金
RUI: Triangulations, Set Intersections, Fair Division, and Voting
RUI:三角测量、集合交集、公平划分和投票
- 批准号:
1002938 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
RUI: Combinatorial fixed point theorems, polytopes, and preference sets
RUI:组合不动点定理、多胞形和偏好集
- 批准号:
0701308 - 财政年份:2007
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
相似海外基金
Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
- 批准号:
EP/X039587/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Research Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
- 批准号:
23K26368 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Continuing Grant