Giant Magnetoelectric Effects in Ferromagnetic-Ferroelectric Heterostructures

铁磁-铁电异质结构中的巨磁电效应

基本信息

  • 批准号:
    0302254
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

This individual investigator award will support a project directed toward fabrication and analysis of novel bulk and multilayer magnetoelectric (ME) composites consisting of ferrites and lead zirconate titanate. The electromagnetic coupling in the composites is mediated by mechanical stress. The focus of the research will be on the origin of giant ME interactions. The research will involve the following tasks. (i) Synthesis of bulk, bilayers and multilayers by traditional sintering, hot pressing and microwave sintering. The objective is to obtain composites with wide variations in of structural and mechanical parameters at the interface. (ii) Measurements of low frequency giant ME effects, theoretical analysis, and estimation of interface coupling. (iii) Studies on microwave ME effects, at ferromagnetic resonance (9-10 GHz) for ferrites. The planned studies are of fundamental and technological importance. Anticipated impacts include research experience for graduate, undergraduate, and high school students and collaboration with European scientists and industry (Delphi Corporation). The layered materials are potential candidates for use as magnetoelectric memory devices, smart sensors and actuators. There are also possibilities for a new class of electrically controlled microwave magnetic signal processing devices and magnetically controlled piezoelectric devices.This individual investigator award supports a research project involving the preparation and analysis of materials that are capable of converting magnetic fields to electric fields. Materials of interest are composites consisting of ferrites that respond to magnetic fields and lead zirconate titanate that respond to electric fields. The ferrite deforms in a magnetic field and the deformation in turn produces electricity in the titanate. Both bulk and layered samples will be prepared. A variety of processing techniques, including microwave heating, will be used to prepare samples with the best field conversion efficiency. Sample properties will be studied over a wide frequency range. Anticipated impacts of the research include the following. (i) Hands-on research experience for graduate, undergraduate and high school students. (ii) Collaboration with European scientists on theoretical aspects of the research. (iii) New materials for use as multifunctional smart sensors and transducers in communication and defense related systems. (iv) Collaboration with Delphi Automotive Systems on the use of the composites for applications in automotive industry.
该个人研究者奖将支持一个项目,该项目旨在制造和分析由铁氧体和锆钛酸铅组成的新型大块和多层磁电(ME)复合材料。 复合材料中的电磁耦合由机械应力介导。研究的重点将是巨型ME相互作用的起源。 该研究将涉及以下任务。 (i)用传统烧结、热压和微波烧结合成块体、双层和多层膜。 其目的是获得复合材料的结构和力学参数在界面处的变化很大。 (ii)低频巨电磁效应的测量、理论分析和界面耦合的估算。 (iii)铁氧体在铁磁共振(9-10 GHz)下微波ME效应的研究。计划中的研究具有根本性和技术重要性。 预期的影响包括研究生、本科生和高中生的研究经验,以及与欧洲科学家和工业界的合作(德尔菲公司)。 这种层状材料是磁电存储器件、智能传感器和执行器的潜在候选材料。 此外,还可能开发新的电控微波磁信号处理设备和磁控压电设备。该个人研究者奖支持一个研究项目,涉及能够将磁场转换为电场的材料的制备和分析。 感兴趣的材料是由响应磁场的铁氧体和响应电场的锆钛酸铅组成的复合材料。 铁氧体在磁场中变形,而这种变形又在钛酸盐中产生电。 将制备散装样品和分层样品。 包括微波加热在内的各种加工技术将用于制备具有最佳场转换效率的样品。 将在宽频率范围内研究样品特性。 研究的预期影响包括以下几点。 (i)为研究生、本科生和高中生提供实践研究经验。 (ii)与欧洲科学家就研究的理论方面进行合作。 (iii)用于通信和国防相关系统的多功能智能传感器和换能器的新材料。 (iv)与德尔菲汽车系统公司合作,将复合材料应用于汽车行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gopalan Srinivasan其他文献

Probing magnon–magnon coupling in exchange coupled Y $$_3$$ Fe $$_5$$ O $$_{12}$$ /Permalloy bilayers with magneto-optical effects
用磁光效应探测交换耦合 Y$_3$Fe$_5$O$_{12}$/坡莫合金双层膜中的磁振子-磁振子耦合
  • DOI:
    10.1038/s41598-020-69364-6
  • 发表时间:
    2020-07-28
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Yuzan Xiong;Yi Li;Mouhamad Hammami;Rao Bidthanapally;Joseph Sklenar;Xufeng Zhang;Hongwei Qu;Gopalan Srinivasan;John Pearson;Axel Hoffmann;Valentine Novosad;Wei Zhang
  • 通讯作者:
    Wei Zhang
Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics
具有成分梯度铁氧体和压电体的回转器的磁电效应和功率转换效率
  • DOI:
    10.1016/j.jmmm.2018.10.068
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jitao Zhang;Weiwei Zhu;Dongyu Chen;Hongwei Qu;Peng Zhou;Maksym Popov;Liying Jiang;Lingzhi Cao;Gopalan Srinivasan
  • 通讯作者:
    Gopalan Srinivasan
Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics
  • DOI:
    https://doi.org/10.1016/j.jmmm.2018.10.068
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Jitao Zhang;Weiwei Zhu;Dongyu Chen;Hongwei Qu;Peng Zhou;Maksym Popov;Liying Jiang;Lingzhi Cao;Gopalan Srinivasan
  • 通讯作者:
    Gopalan Srinivasan
Retailer’s inventory policies for a one time only manufacturer trade deal of uncertain duration
  • DOI:
    10.1007/s10479-007-0256-3
  • 发表时间:
    2007-11-16
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Francisco Arcelus;T. P. M. Pakkala;Gopalan Srinivasan
  • 通讯作者:
    Gopalan Srinivasan
Self-biased magnetoelectric gyrators in composite of samarium substituted nickel zinc ferrites and piezoelectric ceramics
钐代镍锌铁氧体与压电陶瓷复合材料的自偏置磁电回转器
  • DOI:
    10.1063/1.5078716
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jitao Zhang;Dongyu Chen;Kang Li;D. A. Filippov;Bingfeng Ge;XInxin Hang;Lingzhi Cao;Gopalan Srinivasan
  • 通讯作者:
    Gopalan Srinivasan

Gopalan Srinivasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gopalan Srinivasan', 18)}}的其他基金

Voltage-Tunable High-Frequency Ferrite Devices based on Non-Linear Magnetoelectric Interactions
基于非线性磁电相互作用的电压可调高频铁氧体器件
  • 批准号:
    1923732
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Hexagonal Ferrite-Ferroelectric Core-Shell Nanofibers, Field-Assisted Assembly of Superstructures and Studies on Magnetoelectric Interactions
六方铁氧体-铁电核壳纳米纤维、超结构场辅助组装及磁电相互作用研究
  • 批准号:
    1808892
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Liquid Phase Epitaxy of Ferromagnetic-Piezoelectrics Heterostructures and Femto-Tesla Magnetic Sensors and Arrays
铁磁压电异质结构和飞特斯拉磁传感器和阵列的液相外延
  • 批准号:
    1307714
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Scanning Microwave Microscope for Research on Materials and Devices
MRI:购买扫描微波显微镜用于材料和器件研究
  • 批准号:
    1337716
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Functionally Graded Ferroics and Magnetoelectric Interactions
功能梯度铁基材料和磁电相互作用
  • 批准号:
    0902701
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Wide-Band Magnetoelectric Interactions in Single Crystal Multiferroic Bilayers
单晶多铁双层中的宽带磁电相互作用
  • 批准号:
    0606153
  • 财政年份:
    2006
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Magneto-Electric Nanostructures for Novel Microwave
合作研究:新型微波的磁电纳米结构
  • 批准号:
    0621907
  • 财政年份:
    2006
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
RUI: Magnetoelectric Effects in Multilayers of Magnetostrictive and Piezoelectric Perovskite Oxides
RUI:磁致伸缩和压电钙钛矿氧化物多层中的磁电效应
  • 批准号:
    0072144
  • 财政年份:
    2000
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似海外基金

U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Dynamical magnetoelectric effect and magnon-photon coupling of toroidal moment
环形矩的动态磁电效应与磁子-光子耦合
  • 批准号:
    23K13064
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design and development of high-performance magnetoelectric composite materials based on periodic polarization inversion structures
基于周期性极化反转结构的高性能磁电复合材料的设计与开发
  • 批准号:
    23H01309
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Magnetoelectric Thin Films for High Frequency Devices
EAGER:用于高频设备的磁电薄膜
  • 批准号:
    2236879
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
  • 批准号:
    2143177
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
GOALI: Magnetoelectric Nanoparticles As Multi-Field Controlled Devices for Activation of Brain Circuitry
GOALI:磁电纳米粒子作为激活大脑回路的多场控制装置
  • 批准号:
    2211082
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
  • 批准号:
    2213443
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Investigation of novel photoinduced magnetoelectric effect in magnetic material
磁性材料中新型光感磁电效应的研究
  • 批准号:
    RTI-2023-00177
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Tools and Instruments
EPITAXY, INTERFACES, AND DOMAIN BOUNDARIES OF ROOM TEMPERATURE MULTIFERROIC MAGNETOELECTRIC FILMS AND HETEROSTRUCTURES
室温多铁性磁电薄膜和异质结构的外延、界面和磁畴边界
  • 批准号:
    RGPIN-2019-07058
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling
合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料
  • 批准号:
    2118806
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了