Spatial Solitons and Their Applications

空间孤子及其应用

基本信息

  • 批准号:
    0303142
  • 负责人:
  • 金额:
    $ 35.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to explore, experimentally and theoretically, several completely new ideas related to optical spatial solitons. All of the proposed research topics challenge basic fundamental questions with some having direct implications in other fields beyond optics. Some of the proposed research topics offer exiting new applications that cannot be otherwise realized.One proposed research objective is an investigation of discrete solitons in 2D systems. Recently, the group has found how to induce, in real time, arrays of closely-spaced 2D nonlinear waveguides. The PIs propose to demonstrate (2+1)D discrete solitons in these systems, collisions between such solitons (including when the input discrete solitons carry angular momentum), show all-optical switching with them, and demonstrate 2D diffraction management (negative diffraction) with them. A somewhat related idea has to do with launching Gap (or Bragg) solitons in a periodically-modulated 2D nonlinear waveguide induced by a photorefractive soliton. This new way to realize Gap solitons could lead to the first observation of interactions between Gap solitons, to slowing down (to very low values) of the velocity of such a spatio-temporal pulse, and to all-optical switching of these solitons.Another proposed research direction is on incoherent cavity solitons and cavity pattern formation in nonlinear weakly-correlated wave-systems. The ideas emerged from their discovery of incoherent solitons and of incoherent modulation instability. Here they propose to build on these discoveries and study the creation of incoherent cavity solitons and the emergence of intricate patterns upon incoherent wave-fronts in cavities. A second related idea is on the clustering and aggregation of solitons in nonlinear weakly-correlated wave-systems that carry angular momentum. the group has shown (2001) that solitons can cluster together and form aggregates of fine-scale structures, while leaving behind them voids of empty space. These patterns evolve naturally (through the incoherent modulation instability process) from a uniform but partially-incoherent wavefront launched into a non-instantaneous nonlinear medium. They expect that if the input wavefront carries angular momentum (topological charge), the resultant clusters ofsolitons will form galaxy-like structures. Here too they plan to study these soliton clustering processes in cavities.Another objective is to investigate a new type of a soliton: the holographic soliton, which is a soliton composed of two symbiotic fields and is supported solely by the grating they induce. Finally, they propose to study solitons that are made of two counter-propagating optical fields, and their interaction collisions.Optical spatial solitons exhibit particle-like behavior in their interactions and stability properties, conserving energy and momentum. The fascinating results obtained with spatial solitons have major consequences in many non-optical systems that can support solitons. Incoherent pattern formation has broad implications on dynamics and solitons in Bose-Einstein Condensates, the fractional quantum Hall effect, and on several other nonlinear many-particle systems, including stripe-formation in granular materials (sand). These incoherent pattern formation effects are directly linked to (order-disorder) phase-transition phenomena, in both classical (phase-independent, thus incoherent) and quantum-mechanic-like (phase-dependent, coherent) systems. they propose to study phase-transition effects during pattern formation in systems of varying coherence, explore the manifestation of the Curie-Weiss Law, Critical Slowing Down, and other features of phase transitions. Solitons have been the subject of intense studyover the last three decades. In the 90's, optical spatial solitons have strongly influenced this field and have stimulated considerable research within nonlinear sciences.The educational goal of the program is to produce graduates that are fully prepared to drive the advancement of photonics and optical communications. They will accomplish this goal by utilizing their laser facilities and research on waveguides and solitons as novel tools for education. Imagine a sequence of courses that already exists at each university involved in this proposal. To increase diversity in the program, Arkansas is current working together with the University of Arkansas at Pine Bluff on a newidea called "Path Way In Science and Engineering" or Path WISE.
PI建议在实验和理论上探索与光空间孤子有关的几种全新想法。所有拟议的研究主题都挑战基本基本问题,其中一些在光学方面的其他领域具有直接影响。一些拟议的研究主题提供了无法实现的新应用程序。一个建议的研究目标是对2D系统中离散孤子的调查。最近,该小组发现如何实时诱导紧密间隔2D非线性波导的阵列。 PI提议在这些系统中证明(2+1)D离散的孤子,此类孤子(包括输入离散孤子子携带角动量)之间的碰撞,与它们显示全光速切换,并与它们一起演示2D衍射管理(负衍射)。在某种程度上,与光赋予孤子诱导的定期调制的2D非线性波导中启动GAP(或Bragg)孤子有关。实现缝隙孤子的这种新方法可能会导致对缝隙孤子之间的相互作用的首次观察,从而减慢了这种时空脉冲的速度(非常低的值),以及这些孤子的全光转换。其他建议的研究方向在非相互范围的型号和腔模式的范围内,在非细胞的型号形成范围内。这些想法是从发现不连贯的孤子和不连贯的不稳定性中得出的。他们在这里建议建立这些发现,并研究创建不一致的腔孤子,以及在空腔中不一致的波浪方面的复杂模式的出现。第二个相关的想法是关于具有角动量的非线性弱关联波系统中孤子的聚类和聚集。该小组(2001年)表明,孤子可以聚集在一起并形成细尺度结构的聚集体,同时留下了空白空间的空隙。这些模式从均匀但部分不连续的波前发射到非实用的非线性培养基中自然发展(通过不连贯的调制不稳定性过程)。他们预计,如果输入波侧具有角动量(拓扑电荷),则所得的溶质簇将形成类似星系的结构。他们在这里也计划研究这些腔体中的这些孤子聚类过程。另一个目标是研究一种新型的孤子:全息孤子,这是一个由两个共生场组成的孤子,仅由它们引起的刺激性支持。最后,他们建议研究由两个反向传播光场制成的孤子,以及它们的相互作用碰撞。光空间孤子在其相互作用和稳定性中表现出类似粒子的行为,可以保留能量和动量。空间孤子获得的引人入胜的结果在许多可以支持孤子子的非光学系统中都有重大后果。不一致的模式形成对Bose-Einstein冷凝物,分数量子霍尔效应以及其他几种非线性多个粒子系统的动力和孤子具有广泛的影响,包括颗粒材料中的条纹形成(SAND)。这些不一致的模式形成效应直接与(订单disorder)相相变现象有关,在经典的(相位无关,因此不一致)和类似量子的机电样(相位依赖性,相干)系统中。他们建议在不同连贯性系统中研究模式形成期间的相变效应,探索居里 - 韦斯定律的表现,临界减速以及相变的其他特征。在过去的三十年中,孤子一直是强烈研究的主题。在90年代,光空间孤子对这一领域有很大影响,并刺激了非线性科学中的大量研究。该计划的教育目标是产生充分准备的毕业生,以推动光子学和光学通信的发展。他们将通过利用其激光设施以及对波导和孤子作为新颖的教育工具来实现这一目标。想象一下,该提案中的每所大学已经存在了一系列课程。为了提高该计划的多样性,阿肯色州目前正在与阿肯色大学派恩·布拉夫(Pine Bluff)合作,在一个名为“科学和工程学之路”或明智的Newidea上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Salamo其他文献

Energy Demand Analysis of Photovoltaic Device – Material and Nanomanufacturing Process Discovery
  • DOI:
    10.1016/j.promfg.2015.09.009
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shilpi Mukherjee;Gregory Salamo;Ajay P. Malshe
  • 通讯作者:
    Ajay P. Malshe

Gregory Salamo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Salamo', 18)}}的其他基金

Quantum Interfaces of Dissimilar Materials
异种材料的量子界面
  • 批准号:
    1809054
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
Semiconductor Carrier Dynamics in Metal-Semiconductor Nanostructures
金属半导体纳米结构中的半导体载流子动力学
  • 批准号:
    1309989
  • 财政年份:
    2013
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
  • 批准号:
    1128462
  • 财政年份:
    2011
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Materials World Network: Understanding and Controlling Optical Excitations in Individual Hybrid Nanostructures
材料世界网络:理解和控制单个混合纳米结构中的光激发
  • 批准号:
    1008107
  • 财政年份:
    2010
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
IMR: Development of Instrument: Improving Homogeneity of Quantum Dot Size, Shape, Positioning for Student Training
IMR:仪器开发:提高学生培训的量子点尺寸、形状、定位的均匀性
  • 批准号:
    0816875
  • 财政年份:
    2008
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Engineering the Linear and Nonlinear Optical Properties of Periodic Waveguide Arrays
设计周期性波导阵列的线性和非线性光学特性
  • 批准号:
    0702187
  • 财政年份:
    2007
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
Workshop to Develop an EPSCoR Consortium to lead the Nation on the Underlying Science and Engineering of Nano Ferroelectric Materials and Devices
建立 EPSCoR 联盟以领导国家纳米铁电材料和器件的基础科学与工程研讨会
  • 批准号:
    0729757
  • 财政年份:
    2007
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
NSF-DFG Cooperative Activity in Materials Research: Behavior of Organized Quantum Dot and/or Wire Arrays
NSF-DFG 材料研究合作活动:有组织的量子点和/或线阵列的行为
  • 批准号:
    0502990
  • 财政年份:
    2005
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Continuing Grant
Teaching Nanoscience
纳米科学教学
  • 批准号:
    0088990
  • 财政年份:
    2001
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant
Acquisition of a Nanolithographic Instrument for Investigations in Nanoscience
购买用于纳米科学研究的纳米光刻仪器
  • 批准号:
    0079790
  • 财政年份:
    2000
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Standard Grant

相似国自然基金

孤子内波环境下浅海混响中的杂波形成机理及特征研究
  • 批准号:
    12374427
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
近可积非线性波动系统的孤子及其动力学性质
  • 批准号:
    12301306
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
光纤克尔谐振腔内单个腔孤子的自激发产生研究
  • 批准号:
    62375001
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
三维光学耗散孤子的时空频耦合机理与调控研究
  • 批准号:
    62375087
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
非线性可积系统初边值问题的孤子解及其渐近性和稳定性研究
  • 批准号:
    12371255
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Integrable systems/solitons, such as methods of their construction or boundary conditions
可积系统/孤子,例如其构造方法或边界条件
  • 批准号:
    2620748
  • 财政年份:
    2021
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Studentship
Topological Solitons and their Moduli Spaces
拓扑孤子及其模空间
  • 批准号:
    2119350
  • 财政年份:
    2018
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Studentship
Clarifying the process of northward expansion for Fagus crenata Blume forests at their natural northern range front
阐明水青冈森林在其自然北部山脉前沿向北扩张的过程
  • 批准号:
    21580189
  • 财政年份:
    2009
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solitons and polarons in conjugated-polymer electron devices and their functionalities
共轭聚合物电子器件中的孤子和极化子及其功能
  • 批准号:
    17067007
  • 财政年份:
    2005
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Fabrication of Hard Magnetic Alloy Nanoparticles by Vapor-Deposition and Their Electron Diffraction Structure Analysis and Magnetic Property Measurements
气相沉积法制备硬磁合金纳米粒子及其电子衍射结构分析和磁性能测量
  • 批准号:
    16106008
  • 财政年份:
    2004
  • 资助金额:
    $ 35.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了