Engineering the Linear and Nonlinear Optical Properties of Periodic Waveguide Arrays

设计周期性波导阵列的线性和非线性光学特性

基本信息

  • 批准号:
    0702187
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

The objective of this proposal is to explore, both experimentally and theoretically, new concepts related to the propagation of optical waves in periodic arrays of optical waveguides. Intellectual Merit: We are all aware of the historically extraordinary difference in behavior between a single atom and the collective behavior of a periodic array of atoms that are organized to form a solid. Interestingly, today we have a similar opportunity to study and perhaps to engineer the corresponding difference in optical behavior between a single waveguide and the extraordinary collective behavior of an array of waveguides. For example, our study of small deviations from periodicity of a waveguide array will allow us to better assess and take advantage of the role of defects in both linear and nonlinear periodic structures. In addition, we are always looking for way to control and to minimize diffraction effects, especially losses, and our investigation will further our understanding and perhaps more importantly, the management of diffraction in periodic waveguide arrays. Finally, our proposal also includes exploring the inclusion of quantum dots in waveguide array structures and therefore offers an exciting way to enhance their nonlinear behavior and open new applications. Broader Impact: All of the proposed research topics challenge basic fundamental questions with some having direct implications in other fields beyond optics. Moreover, we also propose an outreach effort that brings hands-on inquiry based lessons in optics to K-12 science education and attracts under-represented students into optical sciences and engineering. Finally, add to this picture our students designing waveguides, fabricating them, and analyzing them. This is an educational experience that spans the range from basic optical science to operating devices - a beautiful way to learn many old and new concepts in optical engineering.
这一提议的目的是从实验和理论上探索与光波在周期性光波导阵列中传播有关的新概念。智力价值:我们都知道,在历史上,单个原子和组成固体的周期性原子阵列的集体行为之间存在着非凡的差异。有趣的是,今天我们有一个类似的机会来研究并可能设计出单个波导和一组波导的非凡集体行为之间相应的光学行为差异。例如,我们对波导阵列周期的微小偏差的研究将使我们能够更好地评估和利用缺陷在线性和非线性周期结构中的作用。此外,我们一直在寻找控制和最小化衍射效应,特别是损耗的方法,我们的研究将加深我们对周期波导阵列衍射的理解,也许更重要的是,对周期波导阵的衍射管理。最后,我们的建议还包括探索在波导阵列结构中包含量子点,从而提供了一种令人兴奋的方式来增强它们的非线性行为,并开辟新的应用领域。更广泛的影响:所有拟议的研究主题都挑战基本的基本问题,其中一些在光学以外的其他领域具有直接影响。此外,我们还提出了一项外展努力,将光学方面的实践探究课程带到K-12科学教育中,并吸引代表不足的学生进入光学科学和工程。最后,将我们的学生设计、制造和分析的波导添加到这张图片中。这是一种从基础光学科学到操作设备的教育体验--这是学习光学工程中许多新旧概念的绝佳途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Salamo其他文献

Energy Demand Analysis of Photovoltaic Device – Material and Nanomanufacturing Process Discovery
  • DOI:
    10.1016/j.promfg.2015.09.009
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shilpi Mukherjee;Gregory Salamo;Ajay P. Malshe
  • 通讯作者:
    Ajay P. Malshe

Gregory Salamo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Salamo', 18)}}的其他基金

Quantum Interfaces of Dissimilar Materials
异种材料的量子界面
  • 批准号:
    1809054
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Semiconductor Carrier Dynamics in Metal-Semiconductor Nanostructures
金属半导体纳米结构中的半导体载流子动力学
  • 批准号:
    1309989
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
  • 批准号:
    1128462
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Materials World Network: Understanding and Controlling Optical Excitations in Individual Hybrid Nanostructures
材料世界网络:理解和控制单个混合纳米结构中的光激发
  • 批准号:
    1008107
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IMR: Development of Instrument: Improving Homogeneity of Quantum Dot Size, Shape, Positioning for Student Training
IMR:仪器开发:提高学生培训的量子点尺寸、形状、定位的均匀性
  • 批准号:
    0816875
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Workshop to Develop an EPSCoR Consortium to lead the Nation on the Underlying Science and Engineering of Nano Ferroelectric Materials and Devices
建立 EPSCoR 联盟以领导国家纳米铁电材料和器件的基础科学与工程研讨会
  • 批准号:
    0729757
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF-DFG Cooperative Activity in Materials Research: Behavior of Organized Quantum Dot and/or Wire Arrays
NSF-DFG 材料研究合作活动:有组织的量子点和/或线阵列的行为
  • 批准号:
    0502990
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Spatial Solitons and Their Applications
空间孤子及其应用
  • 批准号:
    0303142
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Teaching Nanoscience
纳米科学教学
  • 批准号:
    0088990
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Acquisition of a Nanolithographic Instrument for Investigations in Nanoscience
购买用于纳米科学研究的纳米光刻仪器
  • 批准号:
    0079790
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
  • 批准号:
    23K04688
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
  • 批准号:
    23K03911
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Tides in Coalescing Binary Neutron Stars
聚结双中子星中的线性和非线性潮汐
  • 批准号:
    2308415
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
  • 批准号:
    2149082
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
  • 批准号:
    RGPIN-2021-04311
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
  • 批准号:
    22K06690
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
  • 批准号:
    555670-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and nonlinear reduced models for the numerical approximation of high-dimensional functions
高维函数数值逼近的线性和非线性简化模型
  • 批准号:
    DGECR-2021-00402
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了