NSF-DFG Cooperative Activity in Materials Research: Behavior of Organized Quantum Dot and/or Wire Arrays
NSF-DFG 材料研究合作活动:有组织的量子点和/或线阵列的行为
基本信息
- 批准号:0502990
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL EXPLANATIONThe unifying theme of this work is to refine and apply growth and fabrication techniques to synthesize ordered arrays of nanoscale synthetic units (dots, wires, rings, etc.) which will allow exploration and creation of new structures with novel optical and transport properties. While self-assembly provides quantum dot structures, approaches will be explored to guide dot formation to take a desired path. For example, one can create media with abnormally large or even negative indices of refraction, nonlinear optical photonic crystals that can dramatically change their reflectivity with an applied electric field or increasing optical intensity. Such material by design control would open a new era in applications ranging from improving ferroelectric memory densities by a factor of 10,000 to optical circuits that rival their electronic counterparts. Two research teams contribute complementary expertise and facilities. Both teams have extensive experience in the growth and study of nanostructures. The American team consists of researchers at the University of Arkansas and the University of Oklahoma (AU/OK) who are partners in a NSF Materials Research Science and Engineering Center (MRSEC). This team is especially talented in the growth by molecular beam epitaxy (MBE), characterization by scanning tunneling microscopy (STM), and in particular, the study of the optical behavior of nanostructures and interactions between them. The German team consists of researchers at Humboldt University in Berlin and has many years of experience in growth using gas-source molecular-beam epitaxy and in particular, the study of the transport behavior of heterostructures and nanostructures. Together, both teams have the experience, talent, and infrastructure to uncover the underlying physics important to the growth and optical and transport behavior of organized nanostructure arrays. The award will support graduate students who will benefit greatly from the international research environment.NONTECHNICAL EXPLANATIONThe last decade has seen great advances in our ability to create semiconductor structures on the submicron scale. This has been driven in a large part by the desire for increased chip performance and memory density. Submicron linewidths are now routine in commercial semiconductor devices, but as structure size is reduced, traditional lithographic techniques are encountering fundamental limitations. To achieve smaller feature sizes more innovative techniques such as self-assembly or nanosculpting must be explored. To carry out this investigation two different research teams with complementing talents have been assembled. The American team consists of researchers at the University of Arkansas and the University of Oklahoma (AU/OK) who are partners in a NSF Materials Research Science and Engineering Center (MRSEC). The German team consists of researchers at Humboldt University in Berlin. Together, both teams have the experience, talent, and infrastructure to uncover the underlying physics important to the growth and optical and transport behavior of organized nanostructure arrays. The award will support graduate students who will benefit greatly from the international research environment.
技术说明这项工作的统一主题是完善和应用生长和制造技术来合成纳米级合成单元的有序阵列(点,点,电线,环等),这将允许探索和创建具有新型光学和运输特性的新结构。虽然自组装提供量子点结构,但将探索方法以指导点形成以采取所需的路径。 例如,人们可以创建具有异常大甚至负折射指标的介质,非线性光学光子晶体,可以通过施加的电场或增加光学强度来极大地改变其反射率。通过设计控制的这种材料将开放一个新时代的应用,从将铁电记忆密度提高10,000倍到与其电子对应物相媲美的光电电路。 两个研究团队贡献了互补的专业知识和设施。 两支球队在纳米结构的增长和研究方面都有丰富的经验。 美国团队由阿肯色大学和俄克拉荷马大学(AU/OK)的研究人员组成,他们是NSF材料研究科学与工程中心(MRSEC)的合作伙伴。该团队在分子束外延(MBE)的增长方面特别有才华,通过扫描隧道显微镜(STM)的特征,尤其是研究纳米结构的光学行为及其之间的相互作用的研究。 德国团队由柏林洪堡大学的研究人员组成,并使用气体源梁外延,尤其是对异质结构和纳米结构的运输行为的研究具有多年的增长经验。这两个团队都有经验,人才和基础设施,可以揭示有组织纳米结构阵列的增长,光学和运输行为重要的基本物理。该奖项将支持将从国际研究环境中受益匪浅的研究生。近十年来,我们在亚军量表上建立半导体结构的能力取得了长足的进步。 这在很大程度上驱动了芯片性能和记忆密度的渴望。 现在在商业半导体设备中是常规的,但是随着结构尺寸的降低,传统的光刻技术正在遇到基本局限性。 为了达到较小的特征大小,必须探索更具创新性的技术,例如自组装或纳米施加。 为了进行这项调查,已经组装了两个具有补充人才的不同研究团队。美国团队由阿肯色大学和俄克拉荷马大学(AU/OK)的研究人员组成,他们是NSF材料研究科学与工程中心(MRSEC)的合作伙伴。德国团队由柏林洪堡大学的研究人员组成。这两个团队都有经验,人才和基础设施,可以揭示有组织纳米结构阵列的增长,光学和运输行为重要的基本物理。 该奖项将支持将从国际研究环境中受益匪浅的研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Salamo其他文献
Energy Demand Analysis of Photovoltaic Device – Material and Nanomanufacturing Process Discovery
- DOI:
10.1016/j.promfg.2015.09.009 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Shilpi Mukherjee;Gregory Salamo;Ajay P. Malshe - 通讯作者:
Ajay P. Malshe
Gregory Salamo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Salamo', 18)}}的其他基金
Quantum Interfaces of Dissimilar Materials
异种材料的量子界面
- 批准号:
1809054 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Semiconductor Carrier Dynamics in Metal-Semiconductor Nanostructures
金属半导体纳米结构中的半导体载流子动力学
- 批准号:
1309989 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128462 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Materials World Network: Understanding and Controlling Optical Excitations in Individual Hybrid Nanostructures
材料世界网络:理解和控制单个混合纳米结构中的光激发
- 批准号:
1008107 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
IMR: Development of Instrument: Improving Homogeneity of Quantum Dot Size, Shape, Positioning for Student Training
IMR:仪器开发:提高学生培训的量子点尺寸、形状、定位的均匀性
- 批准号:
0816875 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Engineering the Linear and Nonlinear Optical Properties of Periodic Waveguide Arrays
设计周期性波导阵列的线性和非线性光学特性
- 批准号:
0702187 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Workshop to Develop an EPSCoR Consortium to lead the Nation on the Underlying Science and Engineering of Nano Ferroelectric Materials and Devices
建立 EPSCoR 联盟以领导国家纳米铁电材料和器件的基础科学与工程研讨会
- 批准号:
0729757 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spatial Solitons and Their Applications
空间孤子及其应用
- 批准号:
0303142 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Acquisition of a Nanolithographic Instrument for Investigations in Nanoscience
购买用于纳米科学研究的纳米光刻仪器
- 批准号:
0079790 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于可编程光纤激光器与有机非线性晶体的光纤太赫兹融合系统研究
- 批准号:61107087
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
可调谐单频中红外激光器和生物气体同位素的检测研究
- 批准号:60878063
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
40Gbit/s高速全光码型转换的新机理和新技术研究
- 批准号:60577006
- 批准年份:2005
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
- 批准号:
2319918 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
- 批准号:
2329629 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
- 批准号:
2329634 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant