NSF-DFG Cooperative Activity in Materials Research: Behavior of Organized Quantum Dot and/or Wire Arrays
NSF-DFG 材料研究合作活动:有组织的量子点和/或线阵列的行为
基本信息
- 批准号:0502990
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL EXPLANATIONThe unifying theme of this work is to refine and apply growth and fabrication techniques to synthesize ordered arrays of nanoscale synthetic units (dots, wires, rings, etc.) which will allow exploration and creation of new structures with novel optical and transport properties. While self-assembly provides quantum dot structures, approaches will be explored to guide dot formation to take a desired path. For example, one can create media with abnormally large or even negative indices of refraction, nonlinear optical photonic crystals that can dramatically change their reflectivity with an applied electric field or increasing optical intensity. Such material by design control would open a new era in applications ranging from improving ferroelectric memory densities by a factor of 10,000 to optical circuits that rival their electronic counterparts. Two research teams contribute complementary expertise and facilities. Both teams have extensive experience in the growth and study of nanostructures. The American team consists of researchers at the University of Arkansas and the University of Oklahoma (AU/OK) who are partners in a NSF Materials Research Science and Engineering Center (MRSEC). This team is especially talented in the growth by molecular beam epitaxy (MBE), characterization by scanning tunneling microscopy (STM), and in particular, the study of the optical behavior of nanostructures and interactions between them. The German team consists of researchers at Humboldt University in Berlin and has many years of experience in growth using gas-source molecular-beam epitaxy and in particular, the study of the transport behavior of heterostructures and nanostructures. Together, both teams have the experience, talent, and infrastructure to uncover the underlying physics important to the growth and optical and transport behavior of organized nanostructure arrays. The award will support graduate students who will benefit greatly from the international research environment.NONTECHNICAL EXPLANATIONThe last decade has seen great advances in our ability to create semiconductor structures on the submicron scale. This has been driven in a large part by the desire for increased chip performance and memory density. Submicron linewidths are now routine in commercial semiconductor devices, but as structure size is reduced, traditional lithographic techniques are encountering fundamental limitations. To achieve smaller feature sizes more innovative techniques such as self-assembly or nanosculpting must be explored. To carry out this investigation two different research teams with complementing talents have been assembled. The American team consists of researchers at the University of Arkansas and the University of Oklahoma (AU/OK) who are partners in a NSF Materials Research Science and Engineering Center (MRSEC). The German team consists of researchers at Humboldt University in Berlin. Together, both teams have the experience, talent, and infrastructure to uncover the underlying physics important to the growth and optical and transport behavior of organized nanostructure arrays. The award will support graduate students who will benefit greatly from the international research environment.
技术说明这项工作的统一主题是完善和应用生长和制造技术来合成纳米级合成单元(点、线、环等)的有序阵列,这将允许探索和创建具有新颖光学和传输特性的新结构。虽然自组装提供了量子点结构,但我们将探索引导点形成采取所需路径的方法。 例如,人们可以创造出折射率异常大甚至为负的介质,非线性光学光子晶体,可以通过施加电场或增加光强度来显着改变其反射率。这种通过设计控制的材料将开启一个新的应用时代,从将铁电存储器密度提高一万倍到可与电子产品相媲美的光学电路。 两个研究团队提供互补的专业知识和设施。 两个团队在纳米结构的生长和研究方面都拥有丰富的经验。 美国团队由阿肯色大学和俄克拉荷马大学 (AU/OK) 的研究人员组成,他们是 NSF 材料研究科学与工程中心 (MRSEC) 的合作伙伴。该团队在分子束外延 (MBE) 生长、扫描隧道显微镜 (STM) 表征、特别是纳米结构的光学行为及其之间的相互作用的研究方面特别有才华。 德国团队由柏林洪堡大学的研究人员组成,拥有多年使用气源分子束外延生长的经验,特别是异质结构和纳米结构输运行为的研究。两个团队共同拥有经验、人才和基础设施,可以揭示对有组织的纳米结构阵列的生长、光学和传输行为至关重要的底层物理原理。该奖项将支持研究生,他们将从国际研究环境中受益匪浅。非技术解释过去十年我们在亚微米尺度上创建半导体结构的能力取得了巨大进步。 这在很大程度上是由于对提高芯片性能和存储密度的渴望所驱动的。 亚微米线宽现在在商业半导体器件中已成为常规,但随着结构尺寸的减小,传统的光刻技术遇到了根本性的限制。 为了实现更小的特征尺寸,必须探索更多创新技术,例如自组装或纳米雕刻。 为了进行这项调查,两个不同的研究团队组成了互补的人才。美国团队由阿肯色大学和俄克拉荷马大学 (AU/OK) 的研究人员组成,他们是 NSF 材料研究科学与工程中心 (MRSEC) 的合作伙伴。德国团队由柏林洪堡大学的研究人员组成。两个团队共同拥有经验、人才和基础设施,可以揭示对有组织的纳米结构阵列的生长、光学和传输行为至关重要的底层物理原理。 该奖项将支持研究生,他们将从国际研究环境中受益匪浅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Salamo其他文献
Energy Demand Analysis of Photovoltaic Device – Material and Nanomanufacturing Process Discovery
- DOI:
10.1016/j.promfg.2015.09.009 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Shilpi Mukherjee;Gregory Salamo;Ajay P. Malshe - 通讯作者:
Ajay P. Malshe
Gregory Salamo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Salamo', 18)}}的其他基金
Quantum Interfaces of Dissimilar Materials
异种材料的量子界面
- 批准号:
1809054 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Semiconductor Carrier Dynamics in Metal-Semiconductor Nanostructures
金属半导体纳米结构中的半导体载流子动力学
- 批准号:
1309989 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128462 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Materials World Network: Understanding and Controlling Optical Excitations in Individual Hybrid Nanostructures
材料世界网络:理解和控制单个混合纳米结构中的光激发
- 批准号:
1008107 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
IMR: Development of Instrument: Improving Homogeneity of Quantum Dot Size, Shape, Positioning for Student Training
IMR:仪器开发:提高学生培训的量子点尺寸、形状、定位的均匀性
- 批准号:
0816875 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Engineering the Linear and Nonlinear Optical Properties of Periodic Waveguide Arrays
设计周期性波导阵列的线性和非线性光学特性
- 批准号:
0702187 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Workshop to Develop an EPSCoR Consortium to lead the Nation on the Underlying Science and Engineering of Nano Ferroelectric Materials and Devices
建立 EPSCoR 联盟以领导国家纳米铁电材料和器件的基础科学与工程研讨会
- 批准号:
0729757 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spatial Solitons and Their Applications
空间孤子及其应用
- 批准号:
0303142 - 财政年份:2003
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Acquisition of a Nanolithographic Instrument for Investigations in Nanoscience
购买用于纳米科学研究的纳米光刻仪器
- 批准号:
0079790 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
基于光纤激光的DFG红外频率梳光源关键问题的研究
- 批准号:61250017
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
- 批准号:21172265
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Tuning Microtubule-Actin crosstalk to control Mitotic Fidelity
NSF/BIO-DFG:调节微管-肌动蛋白串扰以控制有丝分裂保真度
- 批准号:
2319918 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: Cytochrome c oxidase adaptation to hypoxia in systemic vascular cells - From structure to function
NSF/BIO-DFG:细胞色素 c 氧化酶对全身血管细胞缺氧的适应 - 从结构到功能
- 批准号:
2329629 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF/BIO-DFG: The role of ARL 13B in controlling ciliary cAMP signaling
NSF/BIO-DFG:ARL 13B 在控制睫状 cAMP 信号传导中的作用
- 批准号:
2329634 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG: Multiscale Data-Physics Models for the Critical Role of Interfaces in Overmolded Thermoplastic Parts
NSF-DFG:多尺度数据物理模型显示界面在包覆成型热塑性零件中的关键作用
- 批准号:
2225290 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
- 批准号:
2228266 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
- 批准号:
2346885 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
- 批准号:
2234270 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF-DFG: Solvent-Free Manufacturing of Perovskite Large-Scale Electronics
NSF-DFG:钙钛矿大型电子产品的无溶剂制造
- 批准号:
2135937 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant














{{item.name}}会员




