Probabilistic and Statistical Methods in Machine Learning

机器学习中的概率和统计方法

基本信息

  • 批准号:
    0304861
  • 负责人:
  • 金额:
    $ 10.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-01-01 至 2006-12-31
  • 项目状态:
    已结题

项目摘要

The main focus of this research is to take further the theory of data-dependent bounds on generalization error of learning algorithms, especially, in the context of classification problems. One of the main features of modern classification techniques is that they take into account the distribution of the so called classification margins (large margin methods), the quantities that characterize the reliability of classification. However, the margins alone do not give a satisfactory explanation of the superb performance of these methods. To provide such an explanation one has to combine margin type parameters with complexities of the classification rules in rather sophisticated upper confidence bounds. The goal of the research is to use concentration inequalities and various tools from the theory of Gaussian, empirical and Rademacher processes to develop new, much more subtle and powerful bounds of this type, that would lead to a much better understanding of the performance of the existing large margin classification methods and suggest ways to develop statistically optimal large margin procedures. The research includes the study of limit theorems and inequalities for ratio type empirical processes; the study of localized complexities of function classes involved in learning algorithms and the development of new bounds on generalization performance in terms of individual complexities of combined classifiers; the investigation of convergence rates of the empirical margin distribution to the true margin distribution of classifiers in terms of localized and individual complexities; the study of convergence rates of learning algorithms and the development of adaptive classification algorithms with optimal convergence rates; and the investigation of spectral properties of random matrices that play important role in learning theory for kernel machines. Learning Theory is a rapidly growing area between Computer Science, Mathematics, and Statistics that deals with modeling the process of learning and generalization in both biological and artificial neural networks and other learning machines. The results of the research are likely to facilitate further development of boosting, kernel machines, and other learning techniques and lead to new probabilistic bounds and asymptotic results in the theory of empirical processes with potential applications to many problems in statistical learning theory and other areas of Statistics. Methods of statistical learning theory have been penetrating many important areas of applications ranging from biotechnology to computer security. One of the topics of the proposed research is to develop applications of large margin learning methods in the area of robust control, in particular, to the problem of congestion control in communication networks. The results of the research are likely to impact this and other areas of applications.
本研究的主要重点是进一步的学习算法,特别是在分类问题的背景下,推广误差的数据依赖边界的理论。现代分类技术的一个主要特点是,它们考虑到所谓的分类边际(大边际方法)的分布,即表示分类可靠性的数量。然而,仅仅是边际并不能令人满意地解释这些方法的卓越性能。为了提供这样的解释,必须将联合收割机边缘类型参数与相当复杂的置信上限中的分类规则的复杂性相结合。研究的目标是使用浓度不等式和各种工具,从高斯,经验和Rademacher过程的理论,开发新的,更微妙和强大的这种类型的界限,这将导致更好地了解现有的大利润率分类方法的性能,并建议如何开发统计上最优的大利润率程序。研究内容包括比率型经验过程的极限定理和不等式,学习算法中涉及的函数类的局部复杂性的研究,以及组合分类器在个体复杂性方面推广性能的新界的发展;在局部和个体方面,研究分类器的经验边际分布到真实边际分布的收敛速度复杂性;学习算法的收敛速度的研究和具有最佳收敛速度的自适应分类算法的发展;以及在核机器学习理论中发挥重要作用的随机矩阵的谱特性的研究。 学习理论是计算机科学,数学和统计学之间快速发展的领域,涉及生物和人工神经网络以及其他学习机器中的学习和泛化过程建模。研究的结果可能会促进进一步发展的助推,内核机器,和其他学习技术,并导致新的概率界和渐近结果的经验过程理论与潜在的应用,许多问题在统计学习理论和统计的其他领域。统计学习理论的方法已经渗透到许多重要的应用领域,从生物技术到计算机安全。所提出的研究的主题之一是开发大幅度学习方法在鲁棒控制领域的应用,特别是在通信网络中的拥塞控制问题。研究结果可能会影响这一领域和其他应用领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Koltchinskii其他文献

THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan
  • 通讯作者:
    Arnak S. Dalalyan
Applications of Statistical-Learning Methods in Systems and Control
  • DOI:
    10.1016/s1474-6670(17)41618-1
  • 发表时间:
    2001-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marco Ariola;Chaouki T. Abdallah;Vladimir Koltchinskii
  • 通讯作者:
    Vladimir Koltchinskii

Vladimir Koltchinskii的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Koltchinskii', 18)}}的其他基金

Estimation of Functionals of High-Dimensional Parameters of Statisical Models
统计模型高维参数泛函的估计
  • 批准号:
    2113121
  • 财政年份:
    2021
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
  • 批准号:
    1810958
  • 财政年份:
    2018
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Asymptotics and concentration in spectral estimation for large matrices
大矩阵谱估计中的渐近和集中
  • 批准号:
    1509739
  • 财政年份:
    2015
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Probability Theory and Statistics in High and Infinite Dimensions: Empirical Processes Theory and Beyond
高维和无限维中的概率论和统计:经验过程理论及其他
  • 批准号:
    1407649
  • 财政年份:
    2014
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Complexity Penalization in High Dimensional Matrix Estimation Problems
高维矩阵估计问题中的复杂度惩罚
  • 批准号:
    1207808
  • 财政年份:
    2012
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Continuing Grant
Complexity Regularization in Statistical Learning Theory
统计学习理论中的复杂性正则化
  • 批准号:
    0906880
  • 财政年份:
    2009
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
MSPA-MCS: Sparsity in High-Dimensional Learning Problems
MSPA-MCS:高维学习问题的稀疏性
  • 批准号:
    0624841
  • 财政年份:
    2006
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Continuing Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
  • 批准号:
    MR/W007320/2
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Fellowship
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
  • 批准号:
    2243041
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了