Estimation of Smooth Functionals of Covariance and Other Parameters of High-Dimensional Models
高维模型协方差和其他参数的平滑泛函的估计
基本信息
- 批准号:1810958
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A crucial problem in statistical inference for complex, high-dimensional data is to develop statistical estimators of parameters represented by high-dimensional vectors or large matrices. Optimal error rates in such estimation problems are often rather slow due to the ``curse of dimensionality", and it becomes increasingly important to identify low-dimensional structures and features of high-dimensional parameters that could be estimated efficiently with error rates common in classical, ``low-dimensional" statistics. Such features are often represented by functionals that depend smoothly of unknown parameters and the goal is to take advantage of their smoothness to develop efficient estimation procedures. The problems of this nature often occur in a variety of applications such as signal and image processing, machine learning and data analytics. The purpose of this project is to study these problems systematically and to develop new approaches to efficient estimation of smooth functionals. The project is in an interdisciplinary area between mathematics, statistics and computer science and it includes a number of activities to facilitate interactions with researchers in these areas and to ensure the impact of proposed research on education. The main focus of the project is on the development of general methods of estimation of smooth functionals of covariance operators based on high-dimensional or infinite-dimensional observations. It is expected that these methods will be applicable to other important high-dimensional models such as Gaussian shift models (both in vector and in matrix case); linear regression models (including trace regression and regression models in quantum state tomography); some non-linear models. The methods to be developed include a new approach to bias reduction in smooth functional estimation problems based on iterative application of bootstrap (bootstrap chains) and concentration and normal approximation bounds needed to establish asymptotic efficiency of estimators with reduced bias. The goal is to determine optimal smoothness thresholds for functionals of interest that ensure their efficient estimation, in particular, in a dimension free high-complexity setting, with complexity of the problem characterized by the effective rank of the true covariance. Other directions include the study of efficient estimation of smooth functionals under regularity assumptions on the parameter set and applications of methods of functional estimation to hypotheses testing for high-dimensional parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在复杂的高维数据的统计推断中,一个关键问题是如何对由高维向量或大矩阵表示的参数进行统计估计。由于“维度诅咒”,这类估计问题的最优错误率往往相当慢,因此识别低维结构和高维参数的特征变得越来越重要,这些特征可以用经典的“低维”统计中常见的错误率进行有效估计。这些特征通常由函数表示,这些函数平滑地依赖于未知参数,目标是利用它们的平滑性来开发有效的估计过程。这种性质的问题经常出现在各种应用中,如信号和图像处理、机器学习和数据分析。本项目的目的是系统地研究这些问题,并开发新的方法来有效地估计光滑泛函。该项目是数学、统计学和计算机科学之间的跨学科领域,它包括一些活动,以促进与这些领域的研究人员的互动,并确保拟议的研究对教育的影响。该项目的主要重点是基于高维或无限维观测的协方差算子的光滑函数估计的一般方法的发展。预计这些方法将适用于其他重要的高维模型,如高斯位移模型(矢量和矩阵情况下);线性回归模型(包括量子态层析成像中的迹回归和回归模型);一些非线性模型。要开发的方法包括一种基于迭代应用bootstrap (bootstrap链)的平滑泛函估计问题的减少偏差的新方法,以及建立具有减少偏差的估计量的渐近效率所需的集中和正态近似边界。目标是确定感兴趣的函数的最佳平滑阈值,以确保它们的有效估计,特别是在无维度的高复杂性设置中,问题的复杂性以真实协方差的有效秩为特征。其他研究方向包括参数集正则性假设下光滑泛函的有效估计,以及泛函估计方法在高维参数假设检验中的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient estimation of linear functionals of principal components
- DOI:10.1214/19-aos1816
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:V. Koltchinskii;Matthias Loffler;Richard Nickl
- 通讯作者:V. Koltchinskii;Matthias Loffler;Richard Nickl
Asymptotically efficient estimation of smooth functionals of covariance operators
- DOI:10.4171/jems/1023
- 发表时间:2017-10
- 期刊:
- 影响因子:2.6
- 作者:V. Koltchinskii
- 通讯作者:V. Koltchinskii
Estimation of Smooth Functionals of Location Parameter in Gaussian and Poincare Random Shift Models
高斯和庞加莱随机平移模型中位置参数光滑泛函的估计
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Koltchinskii, Vladimir;Zhilova, Mayya
- 通讯作者:Zhilova, Mayya
Efficient estimation of smooth functionals in Gaussian shift models
- DOI:10.1214/20-aihp1081
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:V. Koltchinskii;M. Zhilova
- 通讯作者:V. Koltchinskii;M. Zhilova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Koltchinskii其他文献
THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan - 通讯作者:
Arnak S. Dalalyan
Applications of Statistical-Learning Methods in Systems and Control
- DOI:
10.1016/s1474-6670(17)41618-1 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:
- 作者:
Marco Ariola;Chaouki T. Abdallah;Vladimir Koltchinskii - 通讯作者:
Vladimir Koltchinskii
Vladimir Koltchinskii的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Koltchinskii', 18)}}的其他基金
Estimation of Functionals of High-Dimensional Parameters of Statisical Models
统计模型高维参数泛函的估计
- 批准号:
2113121 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Asymptotics and concentration in spectral estimation for large matrices
大矩阵谱估计中的渐近和集中
- 批准号:
1509739 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Probability Theory and Statistics in High and Infinite Dimensions: Empirical Processes Theory and Beyond
高维和无限维中的概率论和统计:经验过程理论及其他
- 批准号:
1407649 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Complexity Penalization in High Dimensional Matrix Estimation Problems
高维矩阵估计问题中的复杂度惩罚
- 批准号:
1207808 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Complexity Regularization in Statistical Learning Theory
统计学习理论中的复杂性正则化
- 批准号:
0906880 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MSPA-MCS: Sparsity in High-Dimensional Learning Problems
MSPA-MCS:高维学习问题的稀疏性
- 批准号:
0624841 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Probabilistic and Statistical Methods in Machine Learning
机器学习中的概率和统计方法
- 批准号:
0304861 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
- 批准号:
BB/Y513994/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
CAREER: Elucidating the fundamental mechanisms of stress corrosion cracking from smooth tensile specimens under constant load for quantitative life-prediction
职业:阐明恒定载荷下光滑拉伸样品应力腐蚀开裂的基本机制,以进行定量寿命预测
- 批准号:
2339696 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
- 批准号:
10537602 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Fabrication of contractable vascular model through smooth muscle tissue and functional assessment under drug testing
平滑肌组织可收缩血管模型的制作及药物测试下的功能评估
- 批准号:
23K19195 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Passive interlocking mechanisms that generate smooth locomotion inherent in the musculoskeletal system of archosaurs
产生祖龙肌肉骨骼系统固有的平滑运动的被动联锁机制
- 批准号:
23K03765 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systems Genetics of Vascular Smooth Muscle Phenotypes
血管平滑肌表型的系统遗传学
- 批准号:
10771623 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Vascular Smooth Muscle Protein Quality Control and Aortic Aneurysm Formation
血管平滑肌蛋白质量控制与主动脉瘤形成
- 批准号:
10714562 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Effect of shear stress on coronary smooth muscle maturation
剪切应力对冠状动脉平滑肌成熟的影响
- 批准号:
10580556 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Obscurin-Deficient Breast Epithelia Generate Secreted Factors that Prime Lung Vascular Smooth Muscle Cell Pre-metastatic Microenvironment Formation
暗蛋白缺陷的乳腺上皮细胞产生分泌因子,促进肺血管平滑肌细胞转移前微环境的形成
- 批准号:
10749467 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别: