Recursive Algorithms and Regime Switching Models for Stochastic Optimization
随机优化的递归算法和机制切换模型
基本信息
- 批准号:0304928
- 负责人:
- 金额:$ 16.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is to design stochastic approximation and optimization algorithms, and to develop regime switching dynamic system models for solving problems arising from existing and emerging applications. Several stochastic iterative algorithms featuring non-smooth dynamics or multi-time scales, or leading to non-autonomous limit ordinary differential equations or limit systems given by differential inclusions are proposed. Their asymptotic properties such as convergence and rates of convergence will be examined through the associated dynamic systems. Variants, improvements, and efficient procedures will be developed. The proposed algorithms for tracking time-varying parameters will lead to limit regime-switching ordinary and stochastic differential equations, which are not obtainable using the existing methods in stochastic approximation. Research on regime switching models modulated by Markov chains for both discrete-time and continuous-time systems will be conducted. Aiming at reducing complexity, hierarchical structure of the dynamic systems and time-scale separation will be used. Properties of these systems will be investigated through aggregation and decomposition methods and singular perturbation methodology. These properties will further be used to guide the design and development of procedures for optimization and control of dynamic systems.To meet the growing demand for efficient computational algorithms and methods for optimal decision making in wireless communications, manufacturing systems, financial engineering, signal processing, and queueing networks, this project aims to design mathematical models useful for existing and emerging applications, and to develop algorithms applicable to such problems as CDMA communication systems, production planning, mean-variance portfolio selections, and communication networks. To accommodate systems in the real world, shifts in regimes need to be taken into consideration. Take for instance, the situation in a stock market, the market parameters depend on the market mode that jumps between the "bullish" and "bearish" states. In these states, the corresponding market parameters are quite different resulting in markedly different behavior. In addition, the stock market also exhibits multi-time-scale structure. Such models and time-scale separations also appear in communication networks, production planning and other applications. The proposed research work aims to design feasible models and procedures for the aforementioned systems. The proposed research will yield new insight, and advance state of the art of stochastic optimization methods.
本研究计画旨在设计随机近似与最佳化演算法,并发展动态系统模式以解决现有与新兴应用所产生的问题。提出了几种具有非光滑动力学或多时间尺度的随机迭代算法,或导致非自治极限常微分方程或微分包含所给出的极限系统。他们的渐近性质,如收敛和收敛速度将通过相关的动力系统进行检查。将制定各种不同的、改进的和有效的程序。所提出的算法跟踪时变参数将导致有限状态切换的普通和随机微分方程,这是不使用现有的方法在随机逼近。 研究离散时间和连续时间系统的马尔可夫链调制的状态切换模型。为了降低复杂性,将使用动态系统的层次结构和时标分离。这些系统的性质将通过聚合和分解方法和奇异摄动方法进行研究。这些性质将进一步被用来指导设计和发展的程序,优化和控制的动态system.To满足日益增长的需求,有效的计算算法和方法的最佳决策,在无线通信,制造系统,金融工程,信号处理,和嵌入式网络,这个项目的目的是设计数学模型有用的现有和新兴的应用,并开发适用于CDMA通信系统、生产计划、均值-方差组合选择和通信网络等问题的算法。为了适应真实的世界中的系统,需要考虑制度的变化。例如,在股票市场的情况下,市场参数取决于在“看涨”和“看跌”状态之间跳跃的市场模式。在这些状态下,相应的市场参数是完全不同的,导致明显不同的行为。此外,股票市场还表现出多时间尺度结构。这样的模型和时标分离也出现在通信网络、生产规划和其他应用中。拟议的研究工作旨在为上述系统设计可行的模型和程序。该研究将产生新的见解,并推进随机优化方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang George Yin其他文献
Convergence rates of Markov chain approximation methods for controlled diffusions with stopping
- DOI:
10.1007/s11424-010-0148-5 - 发表时间:
2010-07-06 - 期刊:
- 影响因子:2.800
- 作者:
Qingshuo Song;Gang George Yin - 通讯作者:
Gang George Yin
Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties
- DOI:
10.1007/s11424-006-0022-7 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Gang George Yin;Shaobai Kan;Le Yi Wang - 通讯作者:
Le Yi Wang
Gang George Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang George Yin', 18)}}的其他基金
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
- 批准号:
2229108 - 财政年份:2022
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
2114649 - 财政年份:2021
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
1710827 - 财政年份:2017
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Analysis, Algorithm Design, and Computation for Stochastic Systems and Optimization
随机系统和优化的分析、算法设计和计算
- 批准号:
1207667 - 财政年份:2012
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
Research on Stochastic Systems and Optimization: Analysis, Algorithms, and Computations
随机系统和优化研究:分析、算法和计算
- 批准号:
0907753 - 财政年份:2009
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Stochastic Optimization: Approximation Algorithms and Asymptotic Analysis
随机优化:近似算法和渐近分析
- 批准号:
0603287 - 财政年份:2006
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Optimization for Systems Under Uncertainty: Modeling, Asymptotic Analysis, and Recursive Algorithms
不确定性下的系统优化:建模、渐近分析和递归算法
- 批准号:
9877090 - 财政年份:1999
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
- 批准号:
9529738 - 财政年份:1996
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Stochastic Optimization
数学科学:随机优化研究
- 批准号:
9224372 - 财政年份:1993
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.12万 - 项目类别:
Research Grant