Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
基本信息
- 批准号:2114649
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic systems are systems in which random disturbances play a significant role. Stemming from emerging and existing applications in networked systems, wireless communications, signal processing, economics, and ecology, this project encompasses the study of dynamically evolving stochastic systems with uncertainties, switching among different configurations, and complex structures. The networked systems of interest include financial, communication, social, biological, and ecological networks. The work will be devoted to learning the intrinsic properties of stochastic network systems, developing mathematical models and novel mathematical methods for analyzing such systems, and designing efficient computational schemes for optimization and control of such systems to meet desired goals. The results of the research will be useful for applications to economics, nonlinear system identification and estimation, un-manned vehicles and other multi-agent systems, biodiversity in ecological systems, and social networks. This projects will involve undergraduate and graduate students and will integrate the research with teaching and student training. This work will contribute jointly to the further development of mathematical theory, computational methods and applications, and the improvement of mathematics education. Motivated by a wide variety of applications, this project will study the following research topics. (1)Stochastic models with random switching will be developed and analyzed. Novel features of the systems include (i) past-dependent switching having a countable state space, and (ii) switching jump diffusions with non-local operators, finite switching set, and sigma finite jump measures. Criteria for recurrence, positive recurrence, and ergodicity will be obtained. (2) Kolmogorov-type systems under white noise perturbations, where the diffusions are degenerate, will be investigated. Applications to control dependent environmental protection zones, infectious disease and ecology will be studied. (3) New algorithms for switching diffusions and stochastic approximation will be developed and their rates of convergence will be studied. (i) For Milstein-type algorithms for solutions of switching diffusions, it will be shown that the algorithms preserve order 1 convergence rates as their diffusion counterpart. (ii) Motivated by applications to multi-agent systems, consensus, and swarming, the novelties of the stochastic approximation algorithms include the inclusion of state-dependent switching, state-dependent observation noise, and general time-dependent nonlinear functions. (4) Precise error estimates for identification of Hammerstein nonlinear systems with quantized observations will be obtained. It will be proved that the estimates escape from a small neighborhood of the true parameter with a probability that is exponentially small. (5) Accurate error bounds for approximation schemes of duplication-deletion random networks in the sense of strong approximation will be obtained. This will have impact on the study of random dynamic graphs and applications to social networks. Extensive numerical experiments and simulations will be performed to complement the analysis and algorithm design. The projects will involve the participation of undergraduate and graduate students.
随机系统是随机干扰起重要作用的系统。源于新兴和现有的应用在网络系统,无线通信,信号处理,经济学和生态学,该项目包括动态演变的随机系统与不确定性,不同的配置之间的切换,和复杂的结构的研究。感兴趣的网络系统包括金融,通信,社会,生物和生态网络。这项工作将致力于学习随机网络系统的内在属性,开发数学模型和新的数学方法来分析这样的系统,并设计有效的计算方案,优化和控制这样的系统,以满足预期的目标。研究结果对经济学、非线性系统辨识与估计、无人驾驶汽车及其他多智能体系统、生态系统中的生物多样性以及社交网络等领域的研究具有重要的应用价值。该项目将涉及本科生和研究生,并将研究与教学和学生培训相结合。这项工作将有助于进一步发展数学理论,计算方法和应用,并改善数学教育。本研究课题的目的是为了满足各种各样的应用需求,主要研究以下课题。(1)将开发和分析具有随机切换的随机模型。系统的新特征包括:(i)具有可数状态空间的依赖于过去的切换,以及(ii)具有非局部算子、有限切换集和sigma有限跳跃测度的切换跳跃扩散。将获得复发、阳性复发和遍历性的标准。(2)我们将研究白色杂讯扰动下的Kolmogorov型系统,其中扩散是退化的。将研究控制依赖环境保护区、传染病和生态的应用。(3)新的算法切换扩散和随机逼近将开发和他们的收敛速度进行研究。(i)对于Milstein型算法的开关扩散的解决方案,它将被证明,该算法保持1阶收敛速度作为他们的扩散对应。(ii)受多智能体系统、共识和群集应用的启发,随机近似算法的新颖性包括包含状态相关切换、状态相关观测噪声和一般时间相关非线性函数。(4)本文给出了Hammerstein非线性系统的精确误差估计。它将被证明,估计逃脱一个小的邻域的真参数的概率是指数小。(5)在强逼近意义下,得到了重复删除随机网络逼近格式的精确误差界。这将对随机动态图的研究及其在社交网络中的应用产生影响。将进行大量的数值实验和模拟,以补充分析和算法设计。这些项目将涉及本科生和研究生的参与。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic functional Kolmogorov equations, I: Persistence
- DOI:10.1016/j.spa.2021.09.007
- 发表时间:2021-05
- 期刊:
- 影响因子:1.4
- 作者:D. Nguyen;N. Nguyen;G. Yin
- 通讯作者:D. Nguyen;N. Nguyen;G. Yin
Fast-slow-coupled stochastic functional differential equations
快慢耦合随机泛函微分方程
- DOI:10.1016/j.jde.2022.03.030
- 发表时间:2022-06
- 期刊:
- 影响因子:2.4
- 作者:Fuke Wu;George Yin
- 通讯作者:George Yin
Stability in distribution and stabilization of switching jump diffusions
- DOI:10.1051/cocv/2022062
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:K. Tran;D. Nguyen;G. Yin
- 通讯作者:K. Tran;D. Nguyen;G. Yin
Stochastic functional Kolmogorov equations II: Extinction
- DOI:10.1016/j.jde.2021.05.043
- 发表时间:2021-05
- 期刊:
- 影响因子:2.4
- 作者:D. Nguyen;N. Nguyen;G. Yin
- 通讯作者:D. Nguyen;N. Nguyen;G. Yin
Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: Modeling and analysis
- DOI:10.1016/j.jde.2021.02.023
- 发表时间:2020-12
- 期刊:
- 影响因子:2.4
- 作者:N. Nguyen;G. Yin
- 通讯作者:N. Nguyen;G. Yin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang George Yin其他文献
Convergence rates of Markov chain approximation methods for controlled diffusions with stopping
- DOI:
10.1007/s11424-010-0148-5 - 发表时间:
2010-07-06 - 期刊:
- 影响因子:2.800
- 作者:
Qingshuo Song;Gang George Yin - 通讯作者:
Gang George Yin
Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties
- DOI:
10.1007/s11424-006-0022-7 - 发表时间:
2006-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Gang George Yin;Shaobai Kan;Le Yi Wang - 通讯作者:
Le Yi Wang
Gang George Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang George Yin', 18)}}的其他基金
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
- 批准号:
2229108 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
- 批准号:
2204240 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
1710827 - 财政年份:2017
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Analysis, Algorithm Design, and Computation for Stochastic Systems and Optimization
随机系统和优化的分析、算法设计和计算
- 批准号:
1207667 - 财政年份:2012
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Research on Stochastic Systems and Optimization: Analysis, Algorithms, and Computations
随机系统和优化研究:分析、算法和计算
- 批准号:
0907753 - 财政年份:2009
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Stochastic Optimization: Approximation Algorithms and Asymptotic Analysis
随机优化:近似算法和渐近分析
- 批准号:
0603287 - 财政年份:2006
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Recursive Algorithms and Regime Switching Models for Stochastic Optimization
随机优化的递归算法和机制切换模型
- 批准号:
0304928 - 财政年份:2003
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Optimization for Systems Under Uncertainty: Modeling, Asymptotic Analysis, and Recursive Algorithms
不确定性下的系统优化:建模、渐近分析和递归算法
- 批准号:
9877090 - 财政年份:1999
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
- 批准号:
9529738 - 财政年份:1996
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Stochastic Optimization
数学科学:随机优化研究
- 批准号:
9224372 - 财政年份:1993
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
相似国自然基金
水生态毒理学中的数学建模及应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电机综合智能设计仿真分析软件开发与应用
- 批准号:2025JK2011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
计算机模拟消融热场系统在肿瘤消融中的应用研究
- 批准号:2024Y9301
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
网络化控制系统的随机建模、分析、模拟仿真及应用
- 批准号:62333006
- 批准年份:2023
- 资助金额:227 万元
- 项目类别:重点项目
青少年肌肉力量稳定性训练的仿真系统构建与应用研究
- 批准号:CSTB2023NSCQ-MSX0698
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于GEANT4的聚焦型X射线天文望远镜观测模拟及应用
- 批准号:12003037
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
广义共模电压电磁分析方法与应用研究
- 批准号:2020A151501913
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
工业蒸汽系统不确定条件下基于鲁棒贡献度分解的综合优化方法
- 批准号:62003215
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多层社会网络在隐私保护条件下的建模及特性研究与应用
- 批准号:71971127
- 批准年份:2019
- 资助金额:48.0 万元
- 项目类别:面上项目
生态农业区域规模化人力资本缺失治理政策与管理措施反馈分析和动态仿真理论模型应用研究
- 批准号:71563028
- 批准年份:2015
- 资助金额:29.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations
元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用
- 批准号:
2311372 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
- 批准号:
10323474 - 财政年份:2021
- 资助金额:
$ 52万 - 项目类别:
Advanced analysis techniques with NOvA data & applications for DUNE event simulation
NOvA 数据的高级分析技术
- 批准号:
2488803 - 财政年份:2020
- 资助金额:
$ 52万 - 项目类别:
Studentship
CAREER: Towards General-Purpose, High-Order Integral Equation Methods for Computer Simulation in Engineering: Analysis, Algorithm Design, and Applications
职业:面向工程计算机仿真的通用高阶积分方程方法:分析、算法设计和应用
- 批准号:
1654756 - 财政年份:2017
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
- 批准号:
1710827 - 财政年份:2017
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Simulation and data analysis for haptic hand controller used in surgical applications
外科应用中使用的触觉手控制器的仿真和数据分析
- 批准号:
467127-2014 - 财政年份:2014
- 资助金额:
$ 52万 - 项目类别:
University Undergraduate Student Research Awards
Simulation and analysis of wireless communication requirements for connected vehicle applications
联网车辆应用的无线通信需求仿真和分析
- 批准号:
429724-2012 - 财政年份:2012
- 资助金额:
$ 52万 - 项目类别:
Engage Grants Program
Applications of simulation in ruin theory analysis
模拟在破产理论分析中的应用
- 批准号:
347377-2008 - 财政年份:2008
- 资助金额:
$ 52万 - 项目类别:
Postgraduate Scholarships - Master's
Applications of simulation in ruin theory analysis
模拟在破产理论分析中的应用
- 批准号:
347377-2007 - 财政年份:2007
- 资助金额:
$ 52万 - 项目类别:
Postgraduate Scholarships - Master's
Dynamical Analysis of Nonlinear Complex Systems by Machine Learning and Applications in Simulation Science
机器学习非线性复杂系统动力学分析及其在仿真科学中的应用
- 批准号:
18500184 - 财政年份:2006
- 资助金额:
$ 52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)