Stochastic Optimization: Approximation Algorithms and Asymptotic Analysis

随机优化:近似算法和渐近分析

基本信息

  • 批准号:
    0603287
  • 负责人:
  • 金额:
    $ 23.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-15 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

Owing to the rapid advances in technology in the new era, real-world systems have embraced an ever-expanding complexity. Not only do they vary continuously subject to random disturbances, but also they experience certain switching processes, jump-changing occasionally to affect the systems' states, presenting another fold of uncertainty. In response to the needs in wireless communications, signal processing, manufacturing, finance, and economics, this project aims to design efficient computational methods and analytic properties for such systems. The project presents algorithms taking into consideration noisy measurements and random environments for emerging applications in mobile communications and financial market analysis. Motivated by pursuit-evasion games that involve additional environmental variables, this project develops numerical procedures for games with occasional and random switching, with potential applications to homeland security. To carry out identification tasks where only data obtained using sensors are available, as in automotive engineering and medical applications, identification algorithms using quantized data will be examined. To be able to describe complex systems and their inherent uncertainty and random environment, this project also emphasizes the understanding of the intrinsic properties of random processes, including both diffusive features and jump characteristics. The proposed research will yield new insight, and advance the state of the art of stochastic optimization methods.
由于新时代技术的快速进步,现实世界的系统已经拥抱了越来越大的复杂性。它们不仅会在随机干扰下不断变化,而且还会经历某些切换过程,偶尔会跳跃变化以影响系统的状态,从而呈现出另一种不确定性。为了满足无线通信、信号处理、制造、金融和经济等领域的需求,本项目旨在为这类系统设计有效的计算方法和分析性质。该项目提出了考虑噪声测量和随机环境的算法,用于移动通信和金融市场分析中的新兴应用。在涉及额外环境变量的追逐-逃避游戏的激励下,该项目开发了偶尔和随机切换游戏的数值程序,具有潜在的国土安全应用。为了执行只有使用传感器获得的数据才能获得的识别任务,例如在汽车工程和医疗应用中,将研究使用量化数据的识别算法。为了能够描述复杂系统及其固有的不确定性和随机环境,本项目还强调对随机过程的内在属性的理解,包括扩散特征和跳跃特征。所提出的研究将带来新的见解,并推动随机优化方法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang George Yin其他文献

Convergence rates of Markov chain approximation methods for controlled diffusions with stopping
Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties
  • DOI:
    10.1007/s11424-006-0022-7
  • 发表时间:
    2006-03-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Gang George Yin;Shaobai Kan;Le Yi Wang
  • 通讯作者:
    Le Yi Wang

Gang George Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang George Yin', 18)}}的其他基金

Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229108
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
  • 批准号:
    2204240
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
  • 批准号:
    2114649
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
  • 批准号:
    1710827
  • 财政年份:
    2017
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Continuing Grant
Analysis, Algorithm Design, and Computation for Stochastic Systems and Optimization
随机系统和优化的分析、算法设计和计算
  • 批准号:
    1207667
  • 财政年份:
    2012
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Continuing Grant
Research on Stochastic Systems and Optimization: Analysis, Algorithms, and Computations
随机系统和优化研究:分析、算法和计算
  • 批准号:
    0907753
  • 财政年份:
    2009
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Recursive Algorithms and Regime Switching Models for Stochastic Optimization
随机优化的递归算法和机制切换模型
  • 批准号:
    0304928
  • 财政年份:
    2003
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Optimization for Systems Under Uncertainty: Modeling, Asymptotic Analysis, and Recursive Algorithms
不确定性下的系统优化:建模、渐近分析和递归算法
  • 批准号:
    9877090
  • 财政年份:
    1999
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
  • 批准号:
    9529738
  • 财政年份:
    1996
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Stochastic Optimization
数学科学:随机优化研究
  • 批准号:
    9224372
  • 财政年份:
    1993
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
  • 批准号:
    2306023
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
  • 批准号:
    RGPIN-2021-03828
  • 财政年份:
    2022
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
  • 批准号:
    RGPIN-2021-03828
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial optimization: approximation algorithm and robust optimization
组合优化:近似算法和鲁棒优化
  • 批准号:
    RGPIN-2014-06446
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了