Dynamical systems theory and singular perturbation analysis for patterns, bubbles, and chemical reduction methods
动力系统理论和模式、气泡和化学还原方法的奇异摄动分析
基本信息
- 批准号:0306523
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kaper0306523 This project concerns systems with multiple length and timescales, with the goals of analyzing recent experiments, ofimproving computational methods, and of establishing newmathematical theory for such systems. First, in the area ofchemical patterns with multiple length scales, therecently-discovered phenomena of self-replicating spots andpulses has posed new challenges for modeling and for stabilityanalysis of solutions of partial differential equations. Theinvestigator and collaborators build on their analysis of thedynamics, time scales, and mechanisms responsible forself-replication to study the underlying bifurcation hierarchiesthat organize the self-replication regime, to further examine thezero-pole cancellation phenomenon in the nonlocal eigenvalueproblem stability analysis, to extend the renormalization grouptechnique to establish the fully-nonlinear stability of pulses,and to develop extensions to systems with more than two lengthscales. Second, in the increasingly-important area of reductionmethods for large systems of chemical reactions with multipletime scales, the validity and accuracy of certain methods areanalyzed, with special focus on the computational singularperturbation method of Lam and Goussis. Third, the investigatoranalyzes the Oya-Vallochi model of subsurface bioremediation.Bioremediation is a process in which microorganisms, in thepresence of electron acceptors, degrade environmentally-harmfulorganic compounds. The investigator studies traveling waves ofbiomass activity and advection versus dispersion. Fourth, heconducts fundamental studies of nonspherical deformations of gasbubbles in Newtonian fluids. Finally, a challenging open problemconcerning the existence of self-similar, blow-up solutions ofthe nonlinear Schroedinger equation in spatial dimensions betweentwo and four is attempted. This project concerns mathematics for problems ofsignificant current interest in biology, chemistry, engineering,and physics, which exhibit both fast and slow dynamicalprocesses. First, with collaborators and a doctoral student, theinvestigator analyzes computational methods used to simulatelarge, complex systems of reactions in biochemistry, combustion,and air pollution engineering. These processes, such as theproduction of certain proteins, the burning of natural gas, andthe formation of nitrous oxides in the atmosphere, typicallyinvolve a few hundred species, each of which participates inseveral reactions, with the reaction times ranging fromnanoseconds to milliseconds, even to minutes. Methods that reducethe system complexity, while retaining a desired accuracy, arecritical for modeling these processes. The investigator aims toshow that there is a highly accurate method that can be used toimprove the accuracy of other widely-used methods, which areembedded in major computer codes. Second, the investigator and adoctoral student study mathematical models of bioremediation, inwhich microorganisms are used to degrade environmentally-harmfulorganic compounds. Mathematics provides an advantageous approachto determine important quantities, such as the wave speed withwhich the biologically-active zone propagates through a wet soilcolumn and how this speed depends on the many physicalparameters. Third, fundamental research is conducted on thedynamics of gas bubbles in water. Deformations of sphericalbubbles lead to oscillations on time scales much shorter thanthat on which the spherical mode itself oscillates, and the maingoal is to model the nonlinear transfer of energy between thespherical and nonspherical modes that can lead to bubblecavitation and the attendant production of underwater sound byturbine blades, for example. Finally, the investigator developsfurther theory for self-replicating chemical patterns and for aprototypical equation that governs nonlinear wave propagation.
Kaper 0306523本项目关注具有多个长度和时间尺度的系统,其目标是分析最近的实验,改进计算方法,并为此类系统建立新的数学理论。首先,在具有多个长度尺度的化学模式领域,最近发现的自复制斑点和脉冲现象对偏微分方程的建模和解的稳定性分析提出了新的挑战。研究者和合作者建立在他们对动力学、时间尺度和负责自我复制的机制的分析的基础上,研究组织自我复制机制的潜在分叉层次,进一步研究非局部特征值问题稳定性分析中的零极点抵消现象,扩展重整化群技术以建立脉冲的完全非线性稳定性,并开发具有两个以上长度尺度的系统的扩展。其次,在具有多时间尺度的化学反应大系统的约简方法这一日益重要的领域,分析了某些方法的有效性和准确性,特别关注Lam和Goussis的计算奇异摄动方法。第三,分析了地下生物修复的Oya-Vallochi模型,生物修复是微生物在电子受体存在下降解对环境有害的有机化合物的过程。研究人员研究了生物质活动的行波以及平流与扩散。第四,对牛顿流体中气泡的非球形变形进行了基础研究。最后,我们尝试了一个具有挑战性的公开问题,即在二维和四维空间中非线性Schroedinger方程的自相似解的存在性。这个项目关注的是当前生物学、化学、工程学和物理学中重要的数学问题,这些问题表现出快速和缓慢的动力学过程。首先,与合作者和一名博士生一起,研究人员分析了用于模拟生物化学,燃烧和空气污染工程中大型复杂反应系统的计算方法。这些过程,如某些蛋白质的产生、天然气的燃烧和大气中一氧化二氮的形成,通常涉及几百种物质,每种物质都参与几个反应,反应时间从纳秒到毫秒,甚至几分钟。降低系统复杂性的方法,同时保持所需的准确性,对这些过程的建模至关重要。研究人员的目的是表明,有一个高度准确的方法,可以用来提高其他广泛使用的方法,这是嵌入在主要的计算机代码的准确性。其次,研究者和实习生学习生物修复的数学模型,其中微生物被用来降解对环境有害的有机化合物。数学提供了一个有利的方法来确定重要的数量,如波的速度与生物活性区传播通过湿土柱和如何这个速度取决于许多物理参数。第三,对水中气泡的动力学进行了基础研究。球形气泡的变形导致的振荡时间尺度比球形模式本身的振荡时间尺度短得多,主要目标是模拟球形和非球形模式之间的能量非线性传递,这可能导致气泡空化和涡轮叶片产生的水下声音。最后,研究者进一步发展了自我复制化学模式的理论,并提出了一个典型的非线性波传播方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tasso Kaper其他文献
Tasso Kaper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tasso Kaper', 18)}}的其他基金
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
- 批准号:
1616064 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
1109587 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
0606343 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing grant
Applied dynamical systems and singular perturbation theory for patterns, bubbles and chemical reactions
模式、气泡和化学反应的应用动力系统和奇异摄动理论
- 批准号:
0072596 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems Theory Motivated by Bubbles, Accelerators and Split-Operator Numerical Schemes".
数学科学:由气泡、加速器和分裂算子数值方案推动的动力系统理论”。
- 批准号:
9624471 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: New Resonance Phenomena and Adiabatic Chaos
数学科学:新共振现象和绝热混沌
- 批准号:
9307074 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
新型非对称频分双工系统及其射频关键技术研究
- 批准号:61102055
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
- 批准号:60572117
- 批准年份:2005
- 资助金额:6.0 万元
- 项目类别:面上项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:
2243938 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
MLTURB: A new understanding of turbulence via a machine-learnt dynamical systems theory
MLTURB:通过机器学习动力系统理论对湍流的新理解
- 批准号:
EP/Y004094/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2306769 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developing novel neural network tools for accurate and interpretable dynamical modeling of neural circuits
开发新型神经网络工具,用于准确且可解释的神经回路动态建模
- 批准号:
10752956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A coordinate-independent theory for multi-time-scale dynamical systems
多时间尺度动力系统的坐标无关理论
- 批准号:
DP220101817 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects