Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems

多尺度反应扩散系统的动力系统和奇异摄动理论

基本信息

  • 批准号:
    1616064
  • 负责人:
  • 金额:
    $ 54.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This research project encompasses a series of critical mathematical and scientific questions for multiscale problems arising in the fields of pattern formation, chemistry and combustion, neuroscience, electrical engineering, and multi-particle systems. The first project is on pattern formation and analyzes the dynamics and stability of fronts, pulses, and spots in paradigm reaction-diffusion systems. The second project studies model reduction methods used in complex multiscale chemical reactions, biochemical networks, and combustion by incorporating also the effects of diffusion. The third project involves a completely new class of solutions, known as torus canards, found in models from neuroscience. These solutions help understand the transitions between periodic spiking and bursting. The fourth project will focus on ways to model and analyze the impacts of cut-offs on the dynamics of fronts. The project involves graduate students and postdoctoral fellows in the research, as well as collaborations with scientists at national laboratories. This research project addresses a series of questions concerning multiscale problems in pattern formation, chemistry and combustion, neuroscience, electrical engineering, and multi-particle systems. In the pattern formation project, paradigm reaction-diffusion systems will be studied. The goals are to develop new analytical techniques and mathematical theory for determining the boundaries of the stable pattern-forming regimes, analyzing the stability of semi-strong pulse interactions, modeling the scattering of pulses in 1-D systems and spots in 2-D systems, extending renormalization group methods for stability of modulating pulses, and predicting the dynamic bifurcations of pulses and fronts. The second project centers on accurate model reduction methods for large-scale combustion, chemical, and biochemical systems exhibiting multiple time scales. The goals are to analyze, develop, and improve cutting-edge model reduction methods for finding the low-dimensional manifolds that govern the effective system dynamics in the presence of diffusion. In the third project, the new phenomena of torus canards and canards in partial differential equations will be investigated. A theory of generic torus canards will be developed for fast-slow systems with multi-dimensional fast and slow variables. Known to exist in many neuroscience models, such as the Hindmarsh-Rose equations, the Morris-Lecar-Terman model, the Wilson-Cowan-Izhikevich system, and the forced van der Pol equation, torus canards are critical in the transition regimes between tonic spiking and bursting. A detailed study will also be carried out of the new bursting rhythms known as amplitude-modulated bursting rhythms. The fourth project will study the impacts of cut-offs on the reaction terms, introduced to accurately model regions of low particle densities, on the speeds, shapes, and stability of propagating fronts. A series of important problems related to fourth-order models, two-dimensional space dynamics, front initiation, and front pre-cursors will be studied.
本研究项目包含一系列关键的数学和科学问题,这些问题涉及图案形成、化学和燃烧、神经科学、电子工程和多粒子系统等领域的多尺度问题。第一个项目是关于模式的形成,并分析范式反应扩散系统中锋面、脉冲和斑点的动力学和稳定性。第二个项目研究复杂的多尺度化学反应、生化网络和燃烧中使用的模型还原方法,并结合扩散的影响。第三个项目涉及一种全新的解决方案,被称为环面鸭式,它是在神经科学模型中发现的。这些解决方案有助于理解周期性尖峰和爆发之间的转变。第四个项目将侧重于如何模拟和分析切断对前线动态的影响。该项目涉及研究生和博士后研究人员,并与国家实验室的科学家合作。本研究项目涉及图案形成、化学与燃烧、神经科学、电子工程和多粒子系统等领域的多尺度问题。在模式形成项目中,将研究范式反应-扩散系统。目标是发展新的分析技术和数学理论,以确定稳定模式形成区域的边界,分析半强脉冲相互作用的稳定性,模拟一维系统中的脉冲散射和二维系统中的点,扩展调制脉冲稳定性的重整化群方法,并预测脉冲和锋面的动态分岔。第二个项目集中在精确的模型还原方法大规模燃烧,化学和生化系统显示多个时间尺度。目标是分析,开发和改进尖端的模型简化方法,以寻找在扩散存在时控制有效系统动力学的低维流形。在第三个项目中,将研究环面鸭形和偏微分方程中的鸭形新现象。针对具有多维快慢变量的快慢系统,提出了一种通用环面鸭形理论。众所周知,环面鸭翼存在于许多神经科学模型中,如Hindmarsh-Rose方程、Morris-Lecar-Terman模型、Wilson-Cowan-Izhikevich系统和强迫范德波尔方程,环面鸭翼在强音尖峰和爆发之间的过渡机制中至关重要。还将对称为调幅爆破节奏的新型爆破节奏进行详细的研究。第四个项目将研究截断对反应项的影响,引入反应项以精确模拟低粒子密度区域,对传播锋的速度、形状和稳定性的影响。将研究与四阶模型、二维空间动力学、前沿起始和前沿前体有关的一系列重要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tasso Kaper其他文献

Tasso Kaper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tasso Kaper', 18)}}的其他基金

Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    1109587
  • 财政年份:
    2011
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Continuing Grant
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    0606343
  • 财政年份:
    2006
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Continuing grant
Dynamical systems theory and singular perturbation analysis for patterns, bubbles, and chemical reduction methods
动力系统理论和模式、气泡和化学还原方法的奇异摄动分析
  • 批准号:
    0306523
  • 财政年份:
    2003
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Applied dynamical systems and singular perturbation theory for patterns, bubbles and chemical reactions
模式、气泡和化学反应的应用动力系统和奇异摄动理论
  • 批准号:
    0072596
  • 财政年份:
    2000
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamical Systems Theory Motivated by Bubbles, Accelerators and Split-Operator Numerical Schemes".
数学科学:由气泡、加速器和分裂算子数值方案推动的动力系统理论”。
  • 批准号:
    9624471
  • 财政年份:
    1996
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Mathematical Sciences: New Resonance Phenomena and Adiabatic Chaos
数学科学:新共振现象和绝热混沌
  • 批准号:
    9307074
  • 财政年份:
    1993
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Study of photo-induced phase transitions in strongly correlated systems by extraction of important degrees of freedom using randomized singular value decomposition
通过使用随机奇异值分解提取重要自由度来研究强相关系统中的光致相变
  • 批准号:
    23K03281
  • 财政年份:
    2023
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
  • 批准号:
    2247846
  • 财政年份:
    2023
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
  • 批准号:
    22H01146
  • 财政年份:
    2022
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis of pattern dynamics of reaction-diffusion systems and their singular limit problems
反应扩散系统模式动力学及其奇异极限问题的数学分析
  • 批准号:
    20H01816
  • 财政年份:
    2020
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
  • 批准号:
    1900938
  • 财政年份:
    2019
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Standard Grant
Singular limits of elliptic and parabolic systems
椭圆和抛物线系统的奇异极限
  • 批准号:
    2227486
  • 财政年份:
    2019
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Studentship
On the structure analysis of measure value solutions and singular sets for non-linear drift diffusion systems
非线性漂移扩散系统测值解与奇异集的结构分析
  • 批准号:
    19K03561
  • 财政年份:
    2019
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular nature in nearly integrable Hamiltonian systems and breakdown of classical-quantum correspondence
近可积哈密顿系统的奇异性和经典量子对应的分解
  • 批准号:
    17K05583
  • 财政年份:
    2017
  • 资助金额:
    $ 54.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了