Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena

多尺度反应扩散现象的动力系统和奇异摄动理论

基本信息

  • 批准号:
    1109587
  • 负责人:
  • 金额:
    $ 44.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The PI will conduct research on scientific problems exhibiting multiple time scales and multiple length scales. The first project centers on reaction-diffusion models for chemical patterns involving waves, fronts, pulses, and spots. The theoretical framework of semi-strong interaction theory and renormalization group theory, which the PI helped develop, will be used to understand the dynamics of scattering and pinning in multi-component reaction-diffusion systems, as well as the stability of traveling waves in a reaction-diffusion-advection model of bioremediation. In the second project, the PI will study R-D equations in two space dimensions with cut-off functions on the reaction terms. These cut-offs accurately model regions of low concentrations. The principal goal is to analyze the impact of these cut-offs on the speeds and stability of propagating fronts. This will build on the PI's pioneering use of geometric desingularization to find analytical formulas for wave speeds with cut-offs in 1-D, which match well the numerical data. In the third project, the PI will continue his long-term analysis and development of accurate model reduction methods. These are used in large-scale combustion, chemical, and biochemical systems exhibiting multiple time scales, to find low-dimensional manifolds that govern the effective dynamics. The new research will build on the PI's earlier analysis of the most commonly-used model reduction methods including the ILDM and CSP methods and will take this project to the next level by developing and analyzing methods that find low-dimensional manifolds in the presence of diffusion. In the fourth project, the new phenomena of canards in PDEs will be investigated, as will the new phenomenon of torus canards in mathematical neuroscience models.The PI will conduct research on scientific problems exhibiting multiple time scales and multiple length scales, with the goals of explaining recent experiments, of analyzing computational methods, and of developing new mathematical theory. The first project centers on patterns and waves in chemical and biological systems, with the goal of modeling the interactions between stripes and spots. Traveling waves in models of bioremediation will also be studied. Bioremediation is the process by which microorganisms are induced to degrade environmentally-harmful organic compounds in soil. The PI has established fundamental properties of these traveling waves, and will determine the operating parameters, such as injection rates, that lead to stable bioremediation within the models. In the second project, the PI aims to model the more challenging and realistic problem of front propagation in two space dimensions in the presence of cut-offs. Determination of how cut-offs change the speeds and stability of the fronts will be useful in physics, in particular for many-particle systems in statistical physics. In the third project, the PI will focus on model reduction methods that are critical for combustion science, large-scale reaction networks in chemistry and biochemistry, and in gene regulatory modeling. Despite the ever-advancing speed of computational methods, understanding of these large-scale reaction systems depends critically on the analysis of tractable low-dimensional reduced models. In the fourth project, canards are solutions that stay near unstable system states for relatively long periods of time. The new types of canards to be studied are important in mathematical neuroscience for understanding the transitions between fundamental states, such as tonic spiking and bursting. All of the above planned research will have broader scientific impacts. More than half of the PhD students and postdocs who will work on these projects are women, as is the case for the twenty PhD students and postdoctoral fellows whom the PI has supervised to date. Moreover, the planned projects are parts of collaborations involving scientists at national laboratories and in NATO countries.
PI将对具有多时间尺度和多长度尺度的科学问题进行研究。第一个项目集中于化学模式的反应扩散模型,包括波、锋、脉冲和斑点。PI帮助开发的半强相互作用理论和重整化群论的理论框架将用于理解多组分反应扩散系统中的散射和钉住动力学,以及生物修复反应扩散平流模型中行波的稳定性。在第二个项目中,PI将研究两个空间维度的R-D方程,其中反应项具有截止函数。这些截断值准确地模拟了低浓度区域。主要目标是分析这些截止点对传播前沿的速度和稳定性的影响。这将建立在PI开创性地使用几何去象限来寻找具有1-D截止的波速的解析公式的基础上,该公式与数值数据很好地匹配。在第三个项目中,PI将继续他的长期分析和开发精确的模型简化方法。这些应用于大规模燃烧、化学和生物化学系统中,显示多个时间尺度,以发现控制有效动力学的低维流形。新的研究将建立在PI早期对最常用的模型简化方法(包括ILDM和CSP方法)的分析基础上,并将通过开发和分析发现存在扩散的低维流形的方法,将该项目提升到一个新的水平。在第四个项目中,将研究偏微分方程中鸭翼的新现象,以及神经科学数学模型中环面鸭翼的新现象。PI将对表现出多时间尺度和多长度尺度的科学问题进行研究,目的是解释最近的实验,分析计算方法,并发展新的数学理论。第一个项目集中在化学和生物系统中的模式和波,目标是模拟条纹和斑点之间的相互作用。生物修复模型中的行波也将被研究。生物修复是指诱导微生物降解土壤中对环境有害的有机化合物的过程。PI已经建立了这些行波的基本特性,并将确定操作参数,如注射速率,从而在模型中实现稳定的生物修复。在第二个项目中,PI的目标是在存在截断的情况下,在两个空间维度上模拟更具挑战性和现实的前沿传播问题。确定截止点如何改变锋面的速度和稳定性在物理学中是有用的,特别是对统计物理学中的多粒子系统。在第三个项目中,PI将专注于对燃烧科学、化学和生物化学中的大规模反应网络以及基因调控建模至关重要的模型还原方法。尽管计算方法的速度不断提高,但对这些大规模反应系统的理解主要依赖于对易于处理的低维简化模型的分析。在第四个项目中,鸭是在相对较长时间内保持在不稳定系统状态附近的解决方案。在数学神经科学中,要研究的新型鸭翼对于理解基本状态之间的转换非常重要,例如强直尖峰和爆发。上述所有计划中的研究都将产生更广泛的科学影响。参与这些项目的博士生和博士后中有一半以上是女性,就像PI迄今监督的20名博士生和博士后一样。此外,计划中的项目是国家实验室和北约国家科学家合作的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tasso Kaper其他文献

Tasso Kaper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tasso Kaper', 18)}}的其他基金

Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
  • 批准号:
    1616064
  • 财政年份:
    2016
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    0606343
  • 财政年份:
    2006
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing grant
Dynamical systems theory and singular perturbation analysis for patterns, bubbles, and chemical reduction methods
动力系统理论和模式、气泡和化学还原方法的奇异摄动分析
  • 批准号:
    0306523
  • 财政年份:
    2003
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Applied dynamical systems and singular perturbation theory for patterns, bubbles and chemical reactions
模式、气泡和化学反应的应用动力系统和奇异摄动理论
  • 批准号:
    0072596
  • 财政年份:
    2000
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamical Systems Theory Motivated by Bubbles, Accelerators and Split-Operator Numerical Schemes".
数学科学:由气泡、加速器和分裂算子数值方案推动的动力系统理论”。
  • 批准号:
    9624471
  • 财政年份:
    1996
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Mathematical Sciences: New Resonance Phenomena and Adiabatic Chaos
数学科学:新共振现象和绝热混沌
  • 批准号:
    9307074
  • 财政年份:
    1993
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
  • 批准号:
    60572117
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
  • 批准号:
    22H01146
  • 财政年份:
    2022
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of rigorous computation methods for singular trajectories in dynamical systems
动力系统中奇异轨迹的严格计算方法的开发
  • 批准号:
    17K14235
  • 财政年份:
    2017
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
  • 批准号:
    1616064
  • 财政年份:
    2016
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Duality, singular perturbations and numerical analysis in infinite dimensional linear programming problems related to problems of control of nonlinear dynamical systems
与非线性动力系统控制问题相关的无限维线性规划问题的对偶性、奇异摄动和数值分析
  • 批准号:
    DP0986696
  • 财政年份:
    2009
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Discovery Projects
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    0606343
  • 财政年份:
    2006
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing grant
Dynamical systems theory and singular perturbation analysis for patterns, bubbles, and chemical reduction methods
动力系统理论和模式、气泡和化学还原方法的奇异摄动分析
  • 批准号:
    0306523
  • 财政年份:
    2003
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Applied dynamical systems and singular perturbation theory for patterns, bubbles and chemical reactions
模式、气泡和化学反应的应用动力系统和奇异摄动理论
  • 批准号:
    0072596
  • 财政年份:
    2000
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Study of chaotic dynamical systems by means of the Conley index theory
利用康利指数理论研究混沌动力系统
  • 批准号:
    10640220
  • 财政年份:
    1998
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on global bifurcations for dynamical systems
动力系统全局分岔研究
  • 批准号:
    09640261
  • 财政年份:
    1997
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Dynamical systems
动力系统研究
  • 批准号:
    03640099
  • 财政年份:
    1991
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了